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ABSTRACT
In multiprocessor-based real-time systems, the main memory is

identified as the main source of shared resource contention. Phased

execution models such as the 3-phase task execution model has

shown to be a good candidate to tackle the memory contention

problem. It divides the execution of tasks into computation and

memory phases that enable a fine-grained memory contention

analysis. However, the existing work that focuses on the memory

contention analysis for 3-phase tasks can overestimate the memory

contention that can be suffered by the task under analysis due to the

write requests. This overestimation can yield pessimistic bounds

on the memory access times and memory contention suffered by

tasks which in turn lead to pessimistic worst-case response time

(WCRT) bounds. Considering the limitation of the state-of-the-

art, this work proposes an improved memory contention analysis

for the 3-phase task model. Specifically, we propose a memory

contention analysis for the 3-phase task model by tightly bounding

the memory contention suffered by the task under analysis due

to the write requests. The proposed memory contention analysis

integrates memory address mapping of tasks to improve the bounds

on the maximum memory contention suffered by tasks.

1 INTRODUCTION
The adoption of multicore platforms in hard real-time systems, i.e.,
systems that run applications with stringent timing requirements,

is still under the scrutiny of academia and industry. The main chal-

lenge that hinders the use of commercial off-the-shelf (COTS) mul-

ticore platforms in hard real-time systems is their unpredictability,

which originates from the sharing of different hardware resources,

e.g., shared caches, interconnects, and the main memory. Specifi-

cally, the main memory has been identified as the main source of

shared resource contention (see survey [15]). To solve this problem,

a plethora of works have focused on analyzing the memory con-
tention that can be suffered by tasks [4, 8–11, 19, 20]. Specifically,

these works proposewhite-box modeling based solutions for theDy-
namic Random Access Memory (DRAM), i.e., the solutions take into

account the organization of DRAM and the low-level arbitration

mechanism employed by the memory controller of DRAM.

It has been shown in the state-of-the-art that phased execution

models such as the 3-phase task model [6, 16] enable precise bounds

on the memory and bus contention suffered by tasks [1–4, 14, 17].

The 3-phase task model divides the task execution into three phases

namely Acquisition (A), Execution (E), and Restitution (R). Specifi-

cally, the task first executes its A-phase to prefetch the data/code

required by the task from the main memory and store it in the

core’s local memory (e.g., L1 or L2 cache). It then executes its E-

phase by accessing the data/code that is already available in the

core’s local memory, without the need to access the main mem-

ory. Finally, the task writes the modified data back to the main

memory during the R-phase. The 3-phase task model divides task

execution into distinct computation and memory phases such that

the shared memory is accessed by tasks only during their memory

phases and the main memory is not accessed during the compu-

tation phase. As a consequence, it is possible to infer the specific

time intervals in which memory accesses can happen, i.e., memory

phases, and the time intervals in which specific memory operations

can happen, i.e., read memory operations during the A-phase and

write memory operations during the R-phase. Leveraging upon this,

an existing work [4] focuses on analyzing the maximum memory

contention that can be suffered by 3-phase tasks considering par-

titioned fixed-priority non-preemptive scheduling. Their memory

contention analysis assumes that the system use write batching in

which the memory controller prioritizes read requests over write

requests. Write requests are then served by the memory controller

in batches [5] to improve the turnaround time of the data bus [7],

i.e., the shared bus which is responsible for the data transfer be-

tween the memory controller and memory banks. Even though

the analysis presented in [4] provides an important solution, it has

some limitations. The analysis in [4] pessimistically computes the

memory contention that can be suffered by read requests due to the

write requests. Specifically, the analysis in [4] assumes that either

one batch of write requests is triggered upon the completion of

each read request or the overall delay that can be suffered by the

A-phase is given by the length of the write-buffer plus all R-phases

of all jobs of all tasks that can be released on all other cores during

the A-phase under analysis. This assumption is pessimistic because,

in the 3-phase task model, an R-phase can only be issued by a core

after the completion of an A-phase. In such a scenario, the actual

number of R-phases that can be issued by a core depends on the

number of A-phases that can be completed on that core during

a given time window and not necessarily on the number of jobs

released by tasks running on that core. Consequently, the bound

on the total memory contention can be overestimated which can

produce pessimistic bounds on the WCRT of tasks.

To address these issues, this work has the following contributions.
1. We propose a memory contention analysis for 3-phase tasks

by providing a tighter bound on memory contention that can be

caused by write requests.

2. We also discuss the impact that memory address mapping and

tighter bound on write requests can have on memory access times

and memory contention of tasks.



2 SYSTEM MODEL
We assume a multicore platform comprising 𝑚 identical cores

(𝜋1, 𝜋2, . . . , 𝜋𝑚). The DRAM is shared among all the cores. Sim-

ilarly to the existing work [4], we assume that the shared DRAM is

accessed by cores via a set of crossbar switches that facilitates the

point-to-point connection between each core and main memory.

We assume that the shared cache is partitioned among cores such

that each core has its non-overlapping partition. Furthermore, the

local memory of each core is large enough to store all the data/code

required by the task with the largest memory footprint that can

execute on that core.

Task Model:We consider the 3-phase task model [6], in which the

execution of each task is divided into A, E, and R-phases. Each phase

as well as the complete task execute non-preemptively. We consider

a task set Γ comprising 𝑛 sporadic tasks (𝜏1, 𝜏2, . . . 𝜏𝑛) partitioned
among cores at design time. 𝑇𝑖 denotes the minimum inter-arrival

time between two consecutive jobs of task 𝜏𝑖 , and 𝐷𝑖 denotes its rel-

ative deadline.We assume that tasks have constrained deadlines, i.e.,

𝐷𝑖 ≤ 𝑇𝑖 . We assume that the maximum number of memory requests

that can be issued during the A-phase (resp. R-phase) of task 𝜏𝑖 in
isolation is denoted by𝑀𝐷𝐴

𝑖
(resp.𝑀𝐷𝑅

𝑖
). Similarly, the WCET of

the E-phase of task 𝜏𝑖 is given by 𝐶𝐸
𝑖
. Note that the values of𝑀𝐷𝐴

𝑖
,

𝑀𝐷𝑅
𝑖
, and 𝐶𝐸

𝑖
can be obtained by static analysis, measurement-

based analysis, or by using the combination of both [18]. We assume

that tasks are scheduled using fixed-priority non-preemptive sched-

uling with priorities assigned using any fixed-priority algorithm

such as Rate Monotonic or Deadline Monotonic [12].

Throughout the paper, we refer to the core on which task 𝜏𝑖
(i.e., the task under analysis) executes as the local core, denoted by

𝜋𝑙 . Similarly, any core other than the local core is referred to as a

remote core, usually denoted by 𝜋𝑟 . The set of all tasks mapped to a

remote core 𝜋𝑟 is denoted by Γ′𝑟 .
Main Memory Model:We consider a DRAM as the main memory.

We assume a single rank composed of multiple banks. Each bank

is organized in rows and columns to store the data of tasks. Each

bank has a row buffer that stores the data accessed during the most

recent access to that bank. We assume that memory requests tar-

geting each bank are enqueued in their respective per-bank queues.
Each per-bank queue is then exposed to the inter-bank scheduler
which is responsible to schedule the memory requests from all

the per-bank queues. When a memory request targets a different

row than the activated row of the bank, it results in a row miss
and the memory request can be served by issuing the sequence

of commands, 𝑃𝑅𝐸, i.e., to move back the current content of the

row buffer to its corresponding row in the DRAM bank, 𝐴𝐶𝑇 , i.e.,

to activate the requested row in the row buffer, and 𝐶𝐴𝑆 , i.e., to

perform the intended read/write operation on the activated row.

On the contrary, when a memory request targets the same row as

the activated row of the bank, it results in a row hit and the memory

request can be served using the 𝐶𝐴𝑆 command only. To formalize

the properties of the considered memory controller, we will now

define a set of rules.
R1: Each bank has its per-bank queue in which memory requests

targeting respective banks are inserted. Each per-bank queue is

scheduled using the First-Ready First-Come-First-Serve (FR-FCFS)
policy which means 1) memory requests that result in a row-hit

are prioritized over memory requests that result in a row-miss; 2)

in case of a tie, older memory requests are prioritized over newer

memory requests.

R2: We consider that banks are partitioned to cores such that each

core has its set of banks [13, 20]. Specifically, A-phases of all tasks

mapped on each core cannot access any bank assigned to another

core. However, for the purpose of data sharing, the R-phases of all

tasks in the system can access any bank.

R3: The inter-bank scheduling policy is Round-Robin (RR) which

serves the memory requests from each per-bank queue with the

granularity of one memory request, i.e., one memory request per

bank in each turn. Furthermore, to avoid unbounded delay, we

assume that the inter-bank scheduler cannot reorder requests [4].

R4: Unlike [4], we relax the assumption that each core issues at

most one request per core by assuming that each core can issue

multiple memory requests given that the core issue all outstanding

memory requests in the correct order, i.e., in the sequence.

R5:We assume that reads have higher priority than writes since

writes do not stall the processing pipeline. Write requests are en-

queued in a write buffer of size 𝑄𝑤𝑟𝑖𝑡𝑒 and then served in batches

with the watermarking mechanism [5] to improve the turnaround

time of data bus [7]. Specifically, if there are pending read requests,

the memory controller only starts serving write requests if the num-

ber of write requests are greater than or equal to the watermarking
threshold𝑊𝑡ℎ and serves at least one batch of write requests where

the length of the batch is denoted by 𝑁𝑊𝑏 . Similarly to [4], we

assume that𝑊𝑡ℎ > 𝑄𝑤𝑟𝑖𝑡𝑒 − 𝑁𝑊𝑏 .

R6: For each task 𝜏𝑖 , we assume that𝑀𝐷𝐴
𝑖
≥ 𝑀𝐷𝑅

𝑖
, i.e., each read

request (A-phase memory request) can result in at most one write

request (R-phase memory request).

3 PROPOSED MEMORY CONTENTION
ANALYSIS FOR 3-PHASE TASKS

In this work, we consider two different memory address mappings.

1. Bank Level Mapping: In this mapping, we assume that all the

memory blocks that can be requested by an A-phase are mapped to

a single bank. We make no assumption about how the requested

memory blocks are mapped within the bank.

2. Bank Level Contiguous Mapping: This mapping is similar to

the above-mentioned mapping. Additionally, we assume that within

the same bank, contiguous address mapping is used which means

that subsequent memory requests of the A-phase are mapped to

the subsequent columns of the same row. When a memory request

is mapped to the last column of a row, the subsequent memory

requests are mapped to the columns of another row of the same

bank. We do not assume the specific row that will be accessed

when switching to a different row of that bank. Contiguous address

mapping is commonly used to improve the overall performance

since mapping memory requests to the same row provides a better

row-buffer locality.

3.1 Memory Contention Analysis for Bank
Level Mapping

When analyzing the memory contention, tasks can suffer intra-bank
contention, i.e., due to interfering memory requests targeting the

same bank as the task under analysis, and inter-bank contention,
2



i.e., due to interfering memory requests targeting a different bank

than the task under analysis. We start by computing the maximum

memory contention that can be suffered by read requests of the A-
phase of task 𝜏𝑖 due to read requests of tasks running on all remote
cores. Since banks are partitioned between cores (see rule R2), the

A-phase of task 𝜏𝑖 can only suffer inter-bank contention, which is the
contention suffered by a task when accessing the shared command

and data buses that connects the memory controller to all memory

banks.

Lemma 3.1. The maximum number of read memory requests of
all tasks running on all remote cores that can interfere with read
memory requests of the A-phase of one job of task 𝜏𝑖 is upper bounded
by 𝑁 𝑟𝑒𝑎𝑑

𝑖
, where

𝑁 𝑟𝑒𝑎𝑑
𝑖 = 𝑀𝐷𝐴

𝑖 × (𝑚 − 1) (1)

Proof Sketch: Due to fixed priority non-preemptive scheduling,

there can be at most one A-phase active per core at a time as the

E-phase of a task can only start after all read requests of its A-phase

completes. Furthermore, due to the bank-level mapping, we know

that all the read requests of an A-phase are mapped to a single bank.

This implies that despite having multiple private banks per core,

there can be at most one active bank per remote core at a time. Due

to the RR inter-bank scheduling policy (see Rule R3), the inter-bank

scheduler will serve one memory request per bank which means

that each read request of task 𝜏𝑖 can be delayed by at most one read

request per active bank. As there can be at most one active bank per

core, the maximum number of interfering read memory requests

of𝑚 − 1 remote cores is upper bounded by𝑀𝐷𝐴
𝑖
× (𝑚 − 1). □

Having bounded the number of interfering read requests, we bound

the maximum contention that can be caused by those interfering

requests to read requests of the A-phase of one job of task 𝜏𝑖 .

Lemma 3.2. Themaximummemory contention that can be suffered
by read requests of the A-phase of one job of task 𝜏𝑖 due to read requests
of tasks running on all remote cores is upper bounded by 𝑀𝐶𝑟𝑒𝑎𝑑

𝑖
,

where

𝑀𝐶𝑟𝑒𝑎𝑑
𝑖 = 𝑀𝐷𝐴

𝑖 × max

𝑁𝑃𝑅𝐸+𝑁𝐴𝐶𝑇 +𝑁𝐶𝐴𝑆=𝑚−1(
𝐿𝑃𝑅𝐸 (𝑁𝑃𝑅𝐸 ) + 𝐿𝐴𝐶𝑇 (𝑁𝐴𝐶𝑇 ) + 𝐿𝐶𝐴𝑆 (𝑁𝐶𝐴𝑆 )

) (2)

Proof Sketch: In bank-level mapping, we do not assume how

the A-phase is mapped within the bank. In the worst case, all

memory requests may target different rows, thus, each memory

request results in row-miss. Furthermore, from Lemma 3.1, we

know that each read request of the A-phase of task 𝜏𝑖 can be de-

layed by 𝑚 − 1 read requests. It has been proven in Theorem 1

of [20] that the maximum inter-bank contention that can be suf-

fered by a read request from 𝑁 read requests is upper bounded by

max

𝑁𝑃𝑅𝐸+𝑁𝐴𝐶𝑇 +𝑁𝐶𝐴𝑆=𝑁

(
𝐿𝑃𝑅𝐸 (𝑁𝑃𝑅𝐸 ) +𝐿𝐴𝐶𝑇 (𝑁𝐴𝐶𝑇 ) +𝐿𝐶𝐴𝑆 (𝑁𝐶𝐴𝑆 )

)
,

i.e., the maximum inter-bank contention that can be suffered by

a request at any of its commands 𝑃𝑅𝐸, 𝐴𝐶𝑇 , and 𝐶𝐴𝑆 . Extending

this to all read requests of the A-phase of task 𝜏𝑖 , Equation 2 upper

bounds the maximum inter-bank contention that can be suffered

by the A-phase of one job of task 𝜏𝑖 . □
Having bounded the contention caused by read requests, the next

step is to compute the maximum contention that can be caused

by write requests to read requests of the A-phase of task 𝜏𝑖 . We

start by briefly discussing how such a bound is derived in [4] and

identify sources of pessimism. We then propose a new bound in

Lemmas 3.3 and 3.4.

From Lemma 3 of [4] The overall interference suffered by read
requests of the A-phase of task 𝜏𝑖 due to write requests in any time
interval of length 𝑡 is bounded by

𝑀𝐶𝑤𝑟
𝑖 (𝑡 ) = 𝐿𝑊𝐵 (min(𝑁𝑅 (𝑡 ) × 𝑁𝑤𝑏 , 𝑁𝑊 (𝑡 ) +𝑄𝑤𝑟𝑖𝑡𝑒 ) ) (3)

where 𝐿𝑊𝐵 (𝑁 ) is themaximum delay that can be caused by𝑁 write

requests;𝑁𝑅(𝑡) is the sum of themaximum number of read requests

that can be issued by the A-phase of task 𝜏𝑖 and all interfering

read requests from all remote cores during 𝑡 ; 𝑁𝑤𝑏 is the number

of requests that will be served in one batch; 𝑁𝑊 (𝑡) is all write
requests that can be issued by all jobs of all tasks running on all

remote cores during 𝑡 ; and 𝑄𝑤𝑟𝑖𝑡𝑒 is the length of the write buffer.

In Equation 3, 𝑁𝑅(𝑡) ×𝑁𝑤𝑏 specify that each read request of the

task 𝜏𝑖 and each interfering read request from all remote cores suffer

contention from one batch of write requests. This can be pessimistic

since it assumes that every read request will suffer from one batch of

write requests without analyzing the maximum number of batches

that can be triggered during the execution of the A-phase of 𝜏𝑖 .

Similarly, in Equation 3, the term 𝑁𝑊 (𝑡) +𝑄𝑤𝑟𝑖𝑡𝑒 specify that all

write requests of all jobs of all tasks released on all remote cores

during 𝑡 plus all previously enqueued write requests in the write

buffer will cause memory contention. This is extremely pessimistic

because in the 3-phase task model, a core can only issue an R-phase

after the completion of an A-phase. In such a case, the actual number

of write requests issued by a remote core depends on the number

of read requests served on that remote core and not necessarily on

all jobs released on that core during 𝑡 . To accurately quantify the

memory contention that can be caused by write requests, we need

to determine the maximum number of write batches that can be

triggered during the execution of the A-phase of 𝜏𝑖 . Building on

these insights, we will now bound memory contention that can be

caused by write requests as follows.

Lemma 3.3. The maximum number of batches of write memory
requests that can interfere with read requests of one job of the A-phase
of 𝜏𝑖 is upper bounded by 𝑁𝑤𝑏

𝑖
, where

𝑁𝑤𝑏
𝑖 = 1 +


∑𝑚

𝑟=1,𝑟≠𝑙
max

𝜏𝑢 ∈Γ′𝑟
{𝑀𝐷𝑅

𝑢 } + 𝑁 𝑟𝑒𝑎𝑑
𝑖

− (𝑊𝑡ℎ − (𝑄𝑤𝑟𝑖𝑡𝑒 − 𝑁𝑤𝑏 ) )

𝑁𝑤𝑏


(4)

Proof. When read requests of A-phase arrive at the memory

controller, in the worst case, the number of write requests inserted

in the write buffer is equal to the length of the write buffer 𝑄𝑤𝑟𝑖𝑡𝑒 .

This will trigger one batch of write requests as integrated into

Equation 4. At this point in time, the maximum number of write

requests inserted into the write buffer is equal to 𝑄𝑤𝑟𝑖𝑡𝑒 − 𝑁𝑤𝑏 .

Now there can be a scenario in which a remote core just completed

an E-phase and starts executing an R-phase. Considering this, we

need to account for write requests that can be issued by one R-phase

on that remote core. In the worst case, the remote core executes the

R-phase that issued the largest number of write requests among the

R-phases of all tasks running on that remote core, i.e., max

𝜏𝑢 ∈Γ′𝑟
{𝑀𝐷𝑅

𝑢 }.

Extending this to all remote cores,

∑𝑚
𝑟=1,𝑟≠𝑙

max

𝜏𝑢 ∈Γ′𝑟
{𝑀𝐷𝑅

𝑢 } bounds

3



the number of write requests that can be issued by R-phases of

tasks that already completed their A-phases prior to the arrival of

the A-phase of task 𝜏𝑖 . Note that to produce another R-phase on

the same remote core, the core first needs to execute an A-phase.

From Lemma 3.1, we know that 𝑁 𝑟𝑒𝑎𝑑
𝑖

bounds the maximum

number of interfering read requests. Since the length of the R-

phases is assumed to be less than or equal to their A-phases (see

Rule R6), in the worst case, there can at most 𝑁 𝑟𝑒𝑎𝑑
𝑖

number of

write requests that can be issued by all remote cores. We do not

need to account for write requests issued on the local core because

1) task 𝜏𝑖 will only issue R-phase after the completion of its A-phase;

and 2) the R-phase of any other previously executed task on the

local core must have already inserted all its write requests in the

write buffer before the start of 𝜏𝑖 .

Finally, we subtract (𝑊𝑡ℎ − (𝑄𝑤𝑟𝑖𝑡𝑒 − 𝑁𝑤𝑏 ) number of memory

requests because after serving the first batch of write requests, the

status of the write buffer must be 𝑄𝑤𝑟𝑖𝑡𝑒 − 𝑁𝑤𝑏 (remember𝑊𝑡ℎ >

𝑄𝑤𝑟𝑖𝑡𝑒 − 𝑁𝑊𝑏 ). Consequently, another batch of write requests

can only be triggered if the watermarking threshold is reached,

expressed as (𝑊𝑡ℎ − (𝑄𝑤𝑟𝑖𝑡𝑒 − 𝑁𝑤𝑏 ). As we compute the number

of batches, we need to divide the sum of all write requests issued

during arrival to completion of the A-phase of task 𝜏𝑖 with the

number of write requests per batch 𝑁𝑤𝑏 . To maximize the number

of batches, we take the ceiling operation in Equation 4. □

The maximum number of write requests that can interfere with

the A-phase of task 𝜏𝑖 is bounded by 𝑁𝑤𝑟𝑖𝑡𝑒
𝑖

, where

𝑁𝑤𝑟𝑖𝑡𝑒
𝑖 = 𝑁𝑤𝑏

𝑖 × 𝑁𝑤𝑏 (5)

Lemma 3.4. Themaximummemory contention that can be suffered
by the A-phase of task 𝜏𝑖 due to write requests is upper bounded by
𝑀𝐶𝑤𝑟𝑖𝑡𝑒

𝑖
, where

𝑀𝐶𝑤𝑟𝑖𝑡𝑒
𝑖 = 𝐿𝑊𝐵 (𝑁𝑤𝑟𝑖𝑡𝑒

𝑖 ) (6)

Proof Sketch: From Equation 2 of [8], the term 𝐿𝑊𝐵 (𝑁 ) upper
bounds the maximum memory contention that can be caused by 𝑁

write requests (served in batches) assuming that each write request

will result in a row-miss and can potentially target any bank in the

system. Extending this to 𝑁𝑤𝑟𝑖𝑡𝑒
𝑖

write requests, Equation 6 upper

bounds the maximum memory contention that can be suffered by

the A-phase of task 𝜏𝑖 due to write requests. □

Lemma 3.5. The total memory contention that can be suffered by the
A-phase of task 𝜏𝑖 is upper bounded by𝑀𝐶𝑡𝑜𝑡𝑎𝑙

𝑖
, where

𝑀𝐶𝑡𝑜𝑡𝑎𝑙
𝑖 = 𝑀𝐶𝑟𝑒𝑎𝑑

𝑖 +𝑀𝐶𝑤𝑟𝑖𝑡𝑒
𝑖 (7)

Proof Sketch:We know that Equation 2 upper bounds the memory

contention that can be caused by interfering read requests. Similarly,

Equation 6 upper bounds the memory contention that can be caused

by write requests. Consequently, Equation 7 upper bounds the total
memory contention that can be suffered by the A-phase of task 𝜏𝑖
by taking the sum of Equations 2 and 6. □

As proven in [4], we do not need to account for memory con-

tention that can be suffered by the R-phase of task 𝜏𝑖 . This is mainly

because the write requests do not stall the processing pipeline, e.g.,

E-phase execution depends on the A-phase but not on the R-phase.

As a consequence, we only need to ensure that all write requests of

the R-phase arrive at the memory controller. Similarly to [4], we

assume that the length of the write buffer is large enough such that

all write requests of all cores can be inserted in it. This ensures that

the R-phase of a task does not cause any additional delay to the

A-phase of the subsequent task on the same core.

3.2 Memory Contention Analysis for Bank
Level Contiguous Mapping

In the bank-level contiguous mapping, subsequent memory re-

quests of an A-phase are mapped to the subsequent columns of

the same row of the same bank. Upon a row switch, i.e., accessing

the last column of a row, subsequent memory requests are mapped

to subsequent columns of another row in the same bank. Due to

such mapping, we can also compute the minimum number of read

requests that will result in row-hits. A memory request resulting

in a row hit can 1) reduce memory access times of requests as a

row-hit request can only be served using the CAS command; and 2)

suffer less inter-bank contention from interfering read requests as

the row-hit request can only suffer contention at its CAS command.

Despite having contiguous address mapping, it is extremely com-

plex to bound the minimum number of row hits due to the write

batching. We explain this using the following example.

Assume that all read requests of the A-phase of task 𝜏𝑖 are mapped
to the single row of a bank. In such a scenario, ideally, there should
be at most one row miss request and the remaining memory requests
should result in a row hit. However, when the system use write batching
and the worst-case is derived by assuming that one batch of write
requests can be triggered upon serving each read request (as assumed
in [4]), we cannot guarantee the minimum number of row hits. This is
mainly because each time a batch of write requests is triggered, some
or all write requests can target the same bank but a different row than
task 𝜏𝑖 . Consequently, despite mapping all read requests to the same
row, all memory requests may result in row-miss.

This problem has been highlighted by the state-of-the-art, see

Section 3 of [9]. Thanks to Lemma 3.3, we know the maximum

number of write batches that can be triggered during the A-phase

of task 𝜏𝑖 . Using the bound provided by Lemma 3.3, we can tightly

bound the maximum number of row miss requests by integrating

the number of row hit requests that became row miss due to a

batch of write requests. Due to space constraints, the bound on the

maximum number of row miss and the total memory contention

suffered by tasks are left as future work.

4 CONCLUSION
In this work, we propose the memory contention analysis for the

3-phase task model by leveraging memory address mapping of

tasks. We provide a tighter bound on memory contention that

can be caused by write requests. We also highlight how such a

bound can be useful in improving the memory access times and

memory contention suffered by tasks when using a contiguous

address mapping scheme. In the future, we will formulate a detailed

analysis for bank-level contiguous mapping. Furthermore, we can

also improve the bank-level mapping analysis proposed in this work

by directly bounding and integrating total memory contention that

can be suffered by the task under analysis during its WCRT. For

example, Lemma 3.3 can be further improved by considering the

specific set of R-phases that can be released on remote cores during

the WCRT of the task under analysis.
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