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ABSTRACT
The complexity and restricted knowledge of modern autonomous

systems requires real-time analyses based on execution traces. To

this end, we present a general job model, the job algebra, where any

trace is represented by a linear combination of jobs in a vector space.

The reason is that any analysis based on this space is applicable

to any sequence of jobs. Moreover, the algebra provides a system-

atic approach to real-time analysis by separating the modeling of

events, workload and schedulers. We demonstrate the algebra by

composing classical models such as hierarchical event streams and

generalized multiframe tasks by linear combination.

1 INTRODUCTION
Consider an embedded system consisting of an object detection and

an engine management system (EMS) that controls the acceleration

of a car. The end-to-end latency from the perception of an object

via the EMS to the reaction of the car depends on both of these

components [4]. To ensure that the latency does not violate given

timing or safety constraints, we have to analyze the EMS and the

object detection with respect to their timing behavior.

Contrary to the assumptions in classical real-time analysis (RTA)

[11], [19], [23], [25], [31], the task model of such an autonomous

driving (AD) application may not be given for the following reasons:

On the one hand, Amert et al. [5] report that the hardware model

of a graphics processing unit (GPU) may not be publicly available

due to proprietary reasons. This means execution times of tasks

and the scheduling policy of the GPU may be unpredictable. On the

other hand, it is common to apply well-known software libraries of

image processing algorithms to implement AD applications. Those

libraries can however be proprietary or optimized towards the

throughput of GPUs rather than the predictability of the scheduling

[4]. More precisely, AD applications, such as in adaptive AUTOSAR,

allow the creation of threads during runtime. The latter currently

imposes a challenge in the modeling of task sets that change over

time [1]. As the hardware (GPUs) or software (libraries) may be

unknown, we have to evaluate execution traces of jobs to gather

further information about the task model.

Tracing is commonly applied to estimate unknown task parame-

ters such as the execution time [4], [5]. In addition, the period can

be determined if a control flow or call graph of the program is given

[14] [41]. Furthermore, there exist different trace models to apply

real-time calculus (RTC) [17] and network calculus (NC) [26].

However, the RTC already provides an implicit trace model. More

precisely, consider a task with period 𝑝 and worst-case execution
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Figure 1: Cumulative workload 𝑅(𝑡) by the jobs 𝑑/𝑑𝑡𝑅(𝑡).

time (WCET) 𝑐 . Then, one can show for the well-known [25] cumu-

lative workload functions ⌈𝑡/𝑝⌉ · 𝑐 and ⌊𝑡/𝑝 + 1⌋ · 𝑐 that

𝑑

𝑑𝑡

⌈
𝑡

𝑝

⌉
· 𝑐 =

∞∑︁
𝑛=−∞

𝑐 · 𝛿 (𝑡 − 𝑛 · 𝑝) = 𝑑

𝑑𝑡

⌊
𝑡

𝑝
+ 1

⌋
· 𝑐 (1)

holds [33], [38] where 𝛿 represents the Dirac impulse [13]. Every

change in the ceiling or floor function is described by a Dirac

impulse. Moreover, a change describes the request of a task, so that

a Dirac impulse 𝑐 ·𝛿 (𝑡−𝑛·𝑝) represents a job requested at 𝑡 = 𝑛𝑝 with

WCET 𝑐 . This model can be extended to an arbitrary cumulative

workload function 𝑅(𝑡) of the RTC, as depicted in Figure 1. We

observe that the derivative 𝑑/𝑑𝑡 𝑅(𝑡) of the cumulative workload

provides a description of jobs by a series of shifted and scaled Dirac

impulses.

In this paper, we present the idea of a general job model. It is

based on a linear algebra where any job sequence is represented by

a linear combination of Dirac impulses. Any trace can be modeled

due to the closure of a vector space of impulses. The main benefits

of this algebraic approach are that any RTA modeled based on

this space is implicitly applicable to any job trace. On top of that,

any method of the RTC can be applied to this space by using the

differential calculus of impulses [18] [38].

2 RELATEDWORK
The literature on models for RTA can be divided into three different

classes: event, workload and schedulermodels. An overview is given

in Figure 2. The seminal work by Liu & Layland [25] presents the

first model for RTA where periodically activated tasks are assumed

to execute with their WCET and have a deadline equal to their

period. Based on the WCET as the workload model, the hardware
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Figure 2: Relationships of models. An arc points from amore
special to a more general model.

is completely abstracted which is also the case in the presented

literature.

By an event model, we mean a formal description of time points

where the execution of tasks is requested. The event model by [25]

is extended by [23] and [24] to consider offsets, sporadic tasks [28],

and generalized by [6] to describe jitter and bursty events. The work

of [40] extends the latter approach to distributed systems. Event

streams [19] generalize the jitter and bursty events models based

on an event description in the interval domain. The compositional

performance analysis [31] combines the distributed system and

event stream model to a system-wide response time analysis based

on local analysis and input-output arrival curves from the RTC [39]

which originates from the NC [21]. Furthermore, event streams and

the demand bound test [11] are combined to a faster test based on

an approximation algorithm [3] that is generalized to hierarchi-

cal event streams [2]. These event models have in common that

an event is implicitly defined by the proposed analysis functions.

The Heaviside real-time analysis (HeRTA) [34] proposes an event

definition that is independent from the workload and scheduler

model and the analysis. Another research direction are elastic tasks

which are introduced by [16] where the period is not a fixed but a

varying value in a given interval. This model is generalized by [15]

to describe rate-dependent tasks [12] [32].

A workload model abstracts from the code of a task in terms of

execution time. The model by [25] where the whole workload of a

task is described by itsWCET is generalized to themultiframemodel

[27], such that a task cycles through a list of execution times with a

fixed period. The generalized multiframe (GMF) model [8] relaxes

the fixed period by allowing different time distances between jobs.

Further generalizations are the real-time recurring (RRT) [9] [10]

and digraph task model [36] that describe the workload dependent

on the control flow of the task (branches and loops). A survey on

workload models is given by [37].

The formalization of interference among tasks is described by

a scheduler model. Liu & Layland [25] present the critical instant

theorem and the utilization test to model and analyze interference

in fixed priority (FP) and earliest deadline first (EDF) schedulings.

𝑐 ·𝛿 (𝑡 − 𝑠 ) ·S

workload model event model scheduler model

job model

task model

Figure 3: Relationships among themodels with the jobmodel
being the focus of this work.

In the Liu & Layland approach, the scheduler is directly modeled in

the analysis of the task set. The utilization test of EDF is generalized

to the demand bound test [11] as a necessary schedulability test

for any scheduling policy and a necessary and sufficient test for

EDF. The busy period approach [22] and the response time analysis

[20] generalize the critical instant theorem and separate model and

analysis of interference and can be specialized to e.g. FP [22] and

EDF [30], [35]. The work of [34] extends the EDF response time

analysis of [35] and presents a scheduler model that is independent

from the event and workload model.

We observe that the three models have different concepts and

research directions. Especially in the beginning of real-time schedul-

ing theory, mixed models are presented. Later on, the three models

are more separated to specialize RTA to complex event and work-

load patterns as shown in the left and middle column of Figure 2.

Another approach is the RTC that does not assume a certain event

or workload pattern. Our work extends the approach of [34] and

presents a model to describe any complex job pattern.

3 THE JOB ALGEBRA
If we want to analyze a computing system for an arbitrarily given

digital input, i.e. a sequence of events, then we should be able to

model any such signal. The HeRTA framework [34] proposes to

model an event by a Dirac impulse. This event model is independent

from the workload and scheduler model, as depicted in Figure 3.

Furthermore, HeRTA also presents an independent scheduler model.

This work extends HeRTA and shows that job sequences can be

independently described from schedulers based on the idea of a

vector space of job sequences. This means any job sequence can be

constructed by linear combination.

3.1 Event model
We apply the event model of [34] to derive a vector space in which

any job (or event) sequence can be described. A trivial signal that

jumps from zero to one at some time point 𝑡 ∈ R can be described

by the Heaviside function [13]

H(𝑡) =


0 , 𝑡 < 0

1 , 𝑡 > 0

H(0) , 𝑡 = 0

(2)

where H(0) ∈ [0, 1]. Consider an event that occurs at time point

𝑡𝜖 ∈ R and let 𝑡 describe the time in our system. If the event has

not yet occurred, i.e. 𝑡 < 𝑡𝜖 , then H(𝑡 − 𝑡𝜖 ) = 0. If the event has

already occurred, i.e. 𝑡 > 𝑡𝜖 , thenH(𝑡−𝑡𝜖 ) > 0. Therefore, wemodel

with the Heaviside function whether an event has already occurred.

However, if 𝑡 = 𝑡𝜖 , then the Heaviside function does not provide
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an exact value. Distribution theory [13] proposes to describe the

discontinuous change of the Heaviside function by a functional

known as the Dirac impulse

𝛿 (𝑡) = 𝑑

𝑑𝑡
H(𝑡) (3)

which implies 𝛿 (𝑡) = 0 if 𝑡 ≠ 𝑡𝜖 . This means we can exactly model

the occurrence of an event at time point 𝑡𝜖 by a Dirac impulse. A

sequence of events occurring at time points 𝑠1, 𝑠2, 𝑠3 ∈ R can be

described by a series of shifted Dirac impulses

𝛿 (𝑡 − 𝑠1) + 𝛿 (𝑡 − 𝑠2) + 𝛿 (𝑡 − 𝑠3) =
3∑︁
𝑛=1

𝛿 (𝑡 − 𝑠𝑛) (4)

3.2 Workload model
The workload of a job is modeled by execution time which is in turn

described by a positive real number 𝑐 ∈ R>0. To describe workload

in an interval, we apply a definite integral of the Dirac impulse∫ 𝑏

𝑎

𝑐 𝛿 (𝑡 − 𝑡𝜖 ) 𝑑𝑡 =


𝑐 , 𝑡𝜖 ∈ (𝑎, 𝑏)
0 , 𝑡𝜖 ∉ [𝑎, 𝑏]
𝑐 H(0) , 𝑡𝜖 ∈ {𝑎, 𝑏}

(5)

that returns the workload 𝑐 , if the event 𝛿 (𝑡 − 𝑡𝜖 ) occurs in the

interval (𝑎, 𝑏) and that lets us decide at the interval boundaries 𝑎

and 𝑏 whether to count the event, which is a fundamental concept

for RTA[34]. To account for the boundary cases, the upper and

lower Heaviside function are defined

H(𝑡) =
{

0 , 𝑡 < 0

1 , 𝑡 ≥ 0

H(𝑡) =
{

0 , 𝑡 ≤ 0

1 , 𝑡 > 0

(6)

Therefore, workload associated with events is modeled by multi-

plying positive real numbers to the events

𝑐1 𝛿 (𝑡 − 𝑠1) + 𝑐2 𝛿 (𝑡 − 𝑠2) + 𝑐3 𝛿 (𝑡 − 𝑠3) =
3∑︁
𝑛=1

𝑐𝑛𝛿 (𝑡 − 𝑠𝑛) (7)

3.3 Job model
The term 𝑐𝑛 𝛿 (𝑡 − 𝑠𝑛) describes a job that is requested at time point

𝑠𝑛 with workload 𝑐𝑛 . We can easily observe that a sequence of jobs

is a linear combination of scaled Dirac impulses. Furthermore, we

have separately modeled events and workload. The factor 𝑐𝑛 is the

workload model and the Dirac impulse 𝛿 (𝑡 − 𝑠𝑛) the event model.

We generalize this idea and present the job space.

Definition 3.1 (Job space). The set

Δ =

{
𝑁∑︁
𝑛=1

𝑐𝑛 𝛿 (𝑡 − 𝑠𝑛)
����𝑁 ∈ N,∀𝑛 : 𝑐𝑛 ∈ R>0, 𝑠𝑛 ∈ R

}
(8)

is called job space where 𝑐𝑛, 𝑠𝑛 and 𝑁 are respectively the work-
load, shift and degree, and 𝑐𝑛 𝛿 (𝑡 − 𝑠𝑛) is called a job and

𝑐𝑛𝑠𝑛 B
𝑁∑︁
𝑛=1

𝑐𝑛 𝛿 (𝑡 − 𝑠𝑛) (9)

is called a job train.

The following theorem states that the job space is a vector space

which implies that Δ includes any sequence of jobs that can be

constructed by a linear combination.

Theorem 3.2 (Job vector space [18]). Let

+Δ : Δ × Δ → Δ,((𝑐𝑛𝑠𝑛)1, (𝑐𝑛𝑠𝑛)2) ↦→ (𝑐𝑛𝑠𝑛)1 +R (𝑐𝑛𝑠𝑛)2 (10)

·Δ : R × Δ → Δ, (𝜆, 𝑐𝑛𝑠𝑛) ↦→ 𝜆 ·R 𝑐𝑛𝑠𝑛 (11)

be two operations defined on Δ. Then 𝑉Δ = (Δ, +Δ, ·Δ) is a vector
space.

Proof. The proof is shown in [18]. □

Note that we explicitly denoted addition and multiplication of

real numbers by +R and ·R to avoid ambiguity. Based on the vector

space property, we can model any trace of jobs in the job space.

The main benefit of this property is that any RTA that is defined

for the job space is applicable to any trace and therefore to any

sequence of jobs. In other words, we can construct a job model

in the job space independent from any analysis, so that we can

separate these two development processes completely from each

other. We demonstrate this in Section 3.4 after presenting some of

the well-known job models of the literature in the job space.

Let us first mention that the period from classical task models is

a short-form notation for job trains that exhibit periodic request

times. To see this, consider the job train from Equation (7) and

assume that 𝑐1 = 𝑐2 = 𝑐3 = 2 and 𝑠1 = 0, 𝑠2 = 3 and 𝑠3 = 6. Then,

2𝛿 (𝑡 − 0) + 2𝛿 (𝑡 − 3) + 2𝛿 (𝑡 − 6) =
2∑︁
𝑛=0

2𝛿 (𝑡 − 3𝑛) =
2∑︁
𝑛=0

𝑐 𝛿 (𝑡 −𝑛𝑝)

represents the job train of three jobs of a Liu & Layland task [25]

with a WCET and period of 𝑐 = 2 and 𝑝 = 3. If we change the

workloads of the jobs to 𝑐1 = 1, 𝑐2 = 2 and 𝑐3 = 3, then

1𝛿 (𝑡 −0) +2𝛿 (𝑡 −3) +3𝛿 (𝑡 −6) =
2∑︁
𝑛=0

𝑐𝑛 𝛿 (𝑡 −3𝑛) =
2∑︁
𝑛=0

𝑐𝑛 𝛿 (𝑡 −𝑛𝑝)

describes the job train of a multiframe task [27]. If we also change

the shifts between the jobs in a common period, then we get a GMF

task [8]

1𝛿 (𝑡 − 0) + 2𝛿 (𝑡 − 2) + 3𝛿 (𝑡 − 3)
+ 1𝛿 (𝑡 − 7) + 2𝛿 (𝑡 − 9) + 3𝛿 (𝑡 − 10)
+ 1𝛿 (𝑡 − 14) + 2𝛿 (𝑡 − 16) + 3𝛿 (𝑡 − 17)

=

2∑︁
𝑛=0

𝑐1 𝛿 (𝑡 − 7𝑛) +
2∑︁
𝑛=0

𝑐2 𝛿 (𝑡 − 2 − 7𝑛) +
2∑︁
𝑛=0

𝑐3 𝛿 (𝑡 − 3 − 7𝑛)

=

2∑︁
𝑛=0

3∑︁
𝑚=1

𝑐𝑚 𝛿 (𝑡 − 𝜙𝑚 − 𝑛𝑝)

where 𝑝 = 7 is the period and 𝜙1 = 0, 𝜙2 = 2 and 𝜙3 = 3 are the

shifts (offsets) of the frames relative to the period. If the shifts 𝜙𝑚
have equal differences among each other, e.g. if we set 𝑠3 = 4, then

we get a periodic task with burst [34]

2∑︁
𝑛=0

𝑐1 𝛿 (𝑡 − 7𝑛) +
2∑︁
𝑛=0

𝑐2 𝛿 (𝑡 − 2 − 7𝑛) +
2∑︁
𝑛=0

𝑐3 𝛿 (𝑡 − 4 − 7𝑛)

=

2∑︁
𝑛=0

2∑︁
𝑚=0

𝑐𝑚 𝛿 (𝑡 −𝑚𝑞 − 𝑛𝑝)

where each job of a burst has its own WCET 𝑐𝑚 and 𝑞 = 2 is the

inner period of the burst. This means we have a multiframe task
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with bursts. We can generalize those examples to a GMF task and a

multiframe task with bursts generating 𝑁 periods of𝑀 frames and

respectively 𝑁 bursts of𝑀 jobs:

𝑁−1∑︁
𝑛=0

𝑀∑︁
𝑚=1

𝑐𝑚 𝛿 (𝑡 − 𝜙𝑚 − 𝑛𝑝) (12)

𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

𝑐𝑚 𝛿 (𝑡 −𝑚𝑞 − 𝑛𝑝) (13)

We observe for this example that a multiframe task with bursts is a

special case of a GMF task since 𝜙𝑚 may be factorized to𝑚𝑞. The

multiframe task with bursts can be described by a convolution of

its outer and inner period [34]:

𝑁−1∑︁
𝑛=0

𝛿 (𝑡−𝑛𝑝)∗
𝑀−1∑︁
𝑚=0

𝑐𝑚 𝛿 (𝑡−𝑚𝑞) =
𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

𝑐𝑚 𝛿 (𝑡−𝑚𝑞−𝑛𝑝) (14)

Further inner or outer periods can be also added, i.e. a burst in-

side a burst (or hierarchical event stream [2]), by applying further

convolutions [18]:

𝑁−1∑︁
𝑛=0

𝛿 (𝑡 − 𝑛𝑝) ∗
𝑀−1∑︁
𝑚=0

𝑐𝑚 𝛿 (𝑡 −𝑚𝑞) ∗
𝐾−1∑︁
𝑘=0

𝛿 (𝑡 − 𝑘𝑟 ) (15)

=

𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

𝐾−1∑︁
𝑘=0

𝑐𝑚 𝛿 (𝑡 − 𝑘𝑟 −𝑚𝑞 − 𝑛𝑝) (16)

with 𝑟 ∈ R. We observe that convolution represents any nested

periodic behavior of jobs. On top of that, we can now add the GMF

task to the hierarchical event stream and still get a valid job train:

𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

𝑐𝑚 𝛿 (𝑡 − 𝜙𝑚 − 𝑛𝑝) +
𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

𝐾−1∑︁
𝑘=0

𝑐𝑚 𝛿 (𝑡 − 𝑘𝑟 −𝑚𝑞 − 𝑛𝑝)

By valid we mean that the addition of the GMF task and the hi-

erarchical event stream is again a vector of the job space which

follows from the closure of the vector space operations. For all those

presented job models, we know that their job trains are elements of

the job space. This means we can linearly combine any of the job

models of the literature or construct new ones and always know

that the output is again a valid job train. Therefore, any analysis

that is derived for an arbitrary vector of the job space is applicable

to any job model.

3.4 Scheduler model
This section applies the scheduler model of [34] to demonstrate the

independent modeling of jobs and task schedulers. To begin with,

we assign job trains to tasks, so that we can define interference

among job trains by assigning a priority to tasks. Note that this

approach represents the classic AUTOSAR concept of runnables

and tasks [7]. Furthermore, we assign to each job of the train a

relative deadline for the purpose of RTA.

Formally, a task 𝜏 = ((𝑐𝑛𝑠𝑛)𝜏 , 𝒅𝜏 ,Π𝜏 ) is defined by a job train

𝑐𝑛𝑠𝑛 ∈ Δ denoted by (𝑐𝑛𝑠𝑛)𝜏 , a deadline vector 𝒅𝜏 ∈ R𝑁
>0

with 𝑁

being the degree of 𝑐𝑛𝑠𝑛 and Π𝜏 ∈ N being the priority. The relative

deadline of job 𝑐𝑛 𝛿 (𝑡−𝑠𝑛) is denoted by𝑑𝑛𝜏 and its absolute deadline

is 𝐷𝑛𝜏 = 𝑠𝑛 +𝑑𝑛𝜏 . Then, a task set is denoted by Γ = {𝜏}. For example,

we can now encapsulate the job trains of the GMF task and the

hierarchical event stream into two tasks of a task set Γ = {𝜏1, 𝜏2}:

𝑁−1∑︁
𝑛=0

𝑀∑︁
𝑚=1

𝑐𝑚 𝛿 (𝑡 − 𝜙𝑚 − 𝑛𝑝)︸                              ︷︷                              ︸
(𝑐𝑛𝑠𝑛 )𝜏

1

+
𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

𝐾−1∑︁
𝑘=0

𝑐𝑚 𝛿 (𝑡 − 𝑘𝑟 −𝑚𝑞 − 𝑛𝑝)︸                                           ︷︷                                           ︸
(𝑐𝑛𝑠𝑛 )𝜏

2

=

2∑︁
𝑖=1

(𝑐𝑛𝑠𝑛)𝜏𝑖 =
∑︁
𝜏∈Γ

(𝑐𝑛𝑠𝑛)𝜏

After the encapsulation of jobs in tasks, we can define the inter-

ference by using the scheduler model of [34]. In particular, we

demonstrate here an EDF scheduler with tie breaking by priorities.

The task scheduler

S𝐷𝑛
𝜏 ,𝐷

𝑛
𝜏 ′

= H(𝐷𝑛𝜏 − 𝐷𝑛𝜏 ′ ) + 𝛿𝐷𝑛
𝜏 ,𝐷

𝑛
𝜏 ′
· H(Π𝜏 − Π′

𝜏 ) (17)

𝛿𝐷𝑛
𝜏 ,𝐷

𝑛
𝜏 ′

=

{
1 , 𝐷𝑛𝜏 = 𝐷𝑛

𝜏 ′

0 , 𝐷𝑛𝜏 ≠ 𝐷𝑛
𝜏 ′

(18)

describes for the job under consideration 𝑐𝑛 𝛿 (𝑡 − 𝑠𝑛) with absolute

deadline𝐷𝑛𝜏 the interference by another job of the task 𝜏 ′ according
to EDF with tie-breaking. Based on the scheduler S𝐷𝑛

𝜏 ,𝐷
𝑛
𝜏 ′

and the

job train of the task set Γ, we can now compute the interference on

the job under consideration 𝑐𝑛 𝛿 (𝑡 − 𝑠𝑛) in the interval [𝑎, 𝑏) by

𝑅Γ,𝜏 (𝑡,Δ
𝑏

𝑎
) =

∫ ∞

−∞

∑︁
𝜏 ′∈Γ

(𝑐𝑛𝑠𝑛)𝜏 ′ ·S𝐷𝑛
𝜏 ,𝐷

𝑛
𝜏 ′
·H(𝑡 −𝑎) H(𝑏−𝑡) 𝑑𝑡 (19)

which is known as the interference request bound function from

[34]. At this point, we can apply any of the analyses from [34] as for

example the response time analysis or the demand bound test for

any job train. For detailed examples on how to compute Equation

(19), see [34].

4 CONCLUSIONS
This short paper introduced a vector space of job sequences, called

the job algebra, to model any trace of jobs for real-time analysis.

We have exemplary shown that classical real-time task models

can be easily described in the vector space based on the idea that

every task generates a sequence of jobs. The main benefit of the

algebraic approach is that any trace of jobs can be modeled in the

vector space which means any analysis on this space is applicable to

any modeled trace. As a result, a systematic and general approach

of modeling and analysis of real-time systems is possible by the

separation of these processes. In future work, we want to present

our recent results on the generalization of real-time analysis based

on the job algebra.
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