
A Linux container-based architecure for partitioning
real-time tasks sets on ARM multi-core processors.

Cédric Cazanove
IRIT - INP -ENSEEIHT

Toulouse, France

Frédéric Boniol
ONERA

Toulouse, France

Jérôme Ermont
IRIT - INP - ENSEEIHT

Toulouse, France

ABSTRACT
Temporal and space partitioning is the main principle of
Integrated Modular Architectures found in automotive and
avionic domain. This concept was theoretically proposed in
2000 by John Rushby, showing that strict isolation between
safety-critical functions is a solution to guarantee real-time
requirements and to offer modular capacities. This princi-
ple is today implemented by commercial hypervisor such as
Xtratum, PikeOS, Asterios and VxWorks653. These hyper-
visors are often efficient and qualified for the most safety-
critical levels. However, these commecrial solutions are often
very expensive. Recently, a new open-source solution called
RT-CASEs has been proposed by Cinque et al. This solution
is based on Linux and on a container mecanism (Docker). It
ensures partitioning properties. However, this solution re-
quires the Linux patch RTAI, which is not compliant with
Docker on ARM multi-core processors. This short paper
proposes to adapt the RT-CASEs principles on the Xilinx
MPSoC processor composed of 4 ARM A53 cores.

1. INTRODUCTION
Hardware (HW) and software (SW) systems play an in-

creasingly important role in modern vehicles. They imple-
ment more and more safety-critical functions, and at the
same time, they must be ever lighter and cheaper. To face
the safety-critical constraints, automotive and avionic do-
mains have developed the Integrated Modular Architecture
(IMA) paradigm. IMA allows resource sharing and time
partitioning between SW applications on single processors
in order to ensure strict isolation, i.e., to ensure that a faulty
functional or temporal behavior occurring in a given appli-
cation does not affect the other applications although they
share the same HW resources. For that purpose, the auto-
motive and avionic domains have developed respectively the
AUTOSAR [3] and ARINC653 [1] standard. To face the cost
constraint, these two domains try to embed more and more
multi-core processors to increase the on-board computing
power and to reduce the number of embedded computers.
Following these trends, the challenge is now to implement
the IMA paradigm on multi-core processors.

To answer this challenge, several commercial solutions
have been proposed. Most of them are based on propri-
etary virtualization approaches. PikeOS, Asterios and Vx-
Works653 are examples of such solutions. However, they are
not available on all the possible processors targeted by the
embedded domains, and adapting them to new processors
could lead to high extra-costs.

To face the cost constraints, several works explore the

use of Linux-based solutions in safety-critical embedded con-
texts. That is the case for the industrial companies Planet
and SpaceX which chose Linux as operating system for some
embedded computers in their space launchers. Similarly,
NASA also experimented Linux for the navigation computer
of the Ingenuity Mars helicopter [4]. One of the most power-
ful advantages of Linux is its re-usability. The open-source
philosophy allows having a lot of libraries and drivers devel-
oped for Linux on different hardware. All these advantages
make Linux useful for embedded systems.

However, combining the IMA principle with Linux on
multi-core processors remains a difficult challenge. Recently,
Cinque et al [2] have proposed a new open-source solution,
called RT-CASEs, based on Linux and on a container mech-
anism (Docker). Docker ensures spatial partitioning. RT-
CASEs uses the Linux patch RTAI to monitor and control
the real-time behavior of the SW applications. However,
RTAI is not compliant with Docker on ARM multi-core pro-
cessors (which are now widely used in the embedded do-
mains).

The objective of this short paper is to explore another
Linux-based architecture, similar to the RT-CASEs solution,
for multi-core ARM processors. The proposed approach is
based on the PREEMPT-RT patch to take into account real-
time requirements, and on Docker to provide spatial isola-
tion capabilities. We have experimented our solution on the
Xilinx UltraScale+ processor (composed of 4 ARM Cortex
A53 cores).

2. RELATED WORK
The principle of IMA has been introduced in 2000 by J.

Rushby [6]. He laid the groundwork of SW partitioning
showing that a strict isolation is a solution for achieving
safety-critical requirements. Following that seminal work,
several proposition have been done for implementing the
IMA principle. Most of them are based on virtualization
mechanisms. Xtratum, PikeOS and ASTERIOS belongs to
this familiy. They can be considered as type 1 hypervisors
(as they are running directly on the HW layer). The main
advantage of a type 1 hypervisor is that it can execute with
a higher security level on the hardware. It creates partitions
and allocates time and memory to each partition. A par-
tition contains either an operating system or a bare-metal
application. To reach full isolation, a hypervisor can reset
all the memory-related caches (L1, L2, L3, TLB, ...) during
each partition switch. This ensures that an application in
partition A cannot access data of partition B that would
have stayed in the caches. However, this solution increases



significantly the partition switch time and does not easily
hold on multicore processors. One drawback of hypervisors
is that the scheduling is mostly static between partitions.
The hypervisor scheduler has to schedule partitions and not
processes, it does not have much information on the needs
of the partitions. In particular, a partition that has noth-
ing to execute at a moment will still be scheduled during its
reserved time. Another drawback of current commercial hy-
pervisors is that most of them are proprietary frameworks.

Other solutions have been proposed based on the notion of
containerization. A container is another type of virtualiza-
tion mechanism. The difference between a container and a
virtual machine is that a container only virtualizes SW lay-
ers including operating system services and not HW. The
isolation provided by a container is not as strong as the one
provided by a hypervisor since the code is running on the
same HW and with the same level of execution. First of all,
a container does not have its scheduler and thus it cannot
control what happens during a context switch. Second of all,
the applications inside a container are executed on the same
operating system. However, a container provides virtualiza-
tion of operating system services and the different processes
cannot interact with other processes through these services.

Following the containerization idea, the authors of [2] pro-
poses RT-CASEs as a useful alternative to virtualized parti-
tioned systems. The solution developed in RT-CASEs is to
allocate safety-critical applications into containers, charac-
terized by stringent timeliness and reliability requirements,
and to allow these containers to cohabit with non real-time
containers on the same HW. The approach requires the Linux
RTAI patch to use specific services (provided by RTAI) to
control the execution time of each task. The experiments
done in [2] seem to show that RT-CASEs can be seen as a
lightweight open-source solution. However, the RTAI Linux
patch does not work on ARM processors, making RT-CASEs
no more available on ARM platforms.

To face this last difficulty, the the Linux PREEMPT-RT
patch can be used. It has been created to adapt the kernel
to a real-time context [5]. This patch is actually merging
into the upstream Linux stable version. The important as-
pect of the Linux PREEMPT-RT patch is the preemption
model. In the mainline kernel, plenty of the code is non-
preemptible which can delay the tasks execution time. To
reduce the impact of this, it is possible to make the kernel
in a fully preemptible mode. It means that all kernel code
is preemptible (except for a few critical parts).

In this paper we extend the RT-CASEs approach with
PREMPT-RT (instead of RTAI) on a multi-core processor.

3. APPROACH

3.1 Application model
We assume a system composed of SW applications, each

application is characterized by a priority level and is com-
posed of periodic SW tasks. We suppose the applications
are independent, that is, there is no communication and
synchronization constraints between applications. So they
can run in parallel.

Definition 1 (System). A system S is a set of SW
applications possibly running in parallel:

S = A1 ∥ . . . ∥ An

Definition 2 (Application). A SW application is char-
acterized by a priority level and is composed of a set of pe-
riodic tasks. Let Ai ∈ S:

Ai =< prio,Tasks >

with

• Ai.prio ∈ Nat is the priority level of Ai,

• ∀i ̸= j, Ai.prio ̸= Aj .prio (two different applications
have different priority levels),

• ni = card(Ai.Tasks) is the number of tasks of the ap-
plication,

• and Ai.Tasks = {τ1
i , . . . , τ

ni
i } is the set of SW tasks

running in Ai.

The execution order of the tasks inside the application
scope is defined by two attributes: a priority and a period.

Definition 3 (Task). A SW tasks is characterized by
a priority level and a period. Let τ j

i ∈ Ai.Tasks:

τ j
i =< prio, P >

where

• τ j
i .prio is the local priority level of τ j

i w.r.t the others
tasks of Ai,

• ∀j ̸= k, τ j
i .prio ̸= τk

i .prio (two different tasks have dif-
ferent local priorities),

• and τ j
i .P is the period of τ j

i .

Note that this definition assumes that the underlying schedul-
ing strategy is based on a static priority policy. The second
observation is that we have only associated a task with its
local priority inside the application. We have to extend this
definition to define the global priority model, that is, the pri-
ority order between tasks belonging to different applications.
For that purpose, we follow the choice made by Cinque et
al in [2].

Definition 4 (Global priority model). Let S a sys-
tem, let two applications Ai, Aj ∈ S and let two tasks τk

i ∈
Ai.Tasks and τ l

j ∈ Aj .Tasks. The global priority order is a
function Prio such that:

Prio(τk
i ) < Prio(τ l

i ) ⇔
{

i = j and τk
i .prio < τ l

j .prio
i ̸= j and Ai.prio < Aj .prio

In other terms, tasks belonging to high criticality applica-
tions have a higher priority than tasks belonging to low crit-
icality applications, and tasks belonging to the same appli-
cation are ordered by the local priority order.

3.2 Static architecture
Applications are the partitioning units. That is, we want

to execute them in such a way that faulty executions in an
application (in one or several tasks of the application) can
not cause faulty executions in other applications.

For that purpose, we propose the architecture principle
depicted in Figure 1. Let us consider a system S = A1 ∥
. . . ∥ An. Let suppose that S run on a multi-core processor
composed of N cores (N > 1). The main ideas are the
following:



Figure 1: High-level architecture

• The whole platform is managed in a SMP way (Sym-
metric Multi Processor), that is, all the cores (and the
processes running on them) are managed by a global
Linux system.

• To allow real-time execution, the global Linux system
is extended with the PREEMPT-RT patch, which pro-
vides real-time preemptive scheduling capabilities.

• Each application Ai is associated with a dedicated con-
tainer (called containeri in the Figure) provided by a
container engine. All the tasks τ j

i of application Ai run
in the same containeri. Conversely, two tasks from two
different applications run in two different containers.

• The content of each container is managed by a lo-
cal lightweight Linux version. As in [2], the “con-
tainerization” of the applications allows spatial par-
titioning. It ensures that different applications do not
share the same services and the same memory space.
This spatial partitioning prevents thus fault propaga-
tion through service calls and shared addresses.

• The HW cores 1 to N of the multi-core processors host
the SW applications, while core 0 is dedicated to the
monitor process. Reserving the core 0 allows the mon-
itoring process (that is, the process that controls the
execution of each application) to be physically isolated
from the SW applications, and thus to not suffer from
interferences by the applicative part.

• Each application Ai (and its associated container) is
statically allocated to a single core (from 1 to N).
There is no migration between the cores (static allo-
cation), and there is no parallelism inside an applica-
tion. However, several applications can be hosted by
the same core.

• The monitoring part is divided into three threads: two
running on core 0 (progession and time manager) and
one running in each applicative container. These thread
are in blue in Figure 1.

3.3 Execution rules
As such, each core (from 1 to N) hosts several tasks pos-

sibly belonging to different applications. The execution of
these tasks is managed under the preemptive fixed prior-
ity scheduling method allowed by PREEMPT-RT (the task
ready for execution with the highest priority is elected by
the scheduler). The question is then how to ensure tim-
ing isolation between tasks from different applications. As
mentioned in the introduction, commercial solutions such as
PikeOS, Xtratum, and Asterios associate each task (or each
application) with a static time window. At the end of the
time window, the tasks associated with it are suspended to
launch the tasks of the next time window. These solutions
require the definition of a time frame for each core, which
must be compliant with the applicative requirements. De-
signing such a time frame is a difficult job, particularly when
applications change.

Figure 2: Execution rules

In our approach we choose a more flexible solution, based
on three rules:

1. Tasks are scheduled on each core according to the global
priority function Prio (definition 4).



2. The thread progression manager (core 0, belonging to
the monitoring part) stores the progression counter of
each tasks at each instant. The progression of a task at
a time t is the number of executions it has completed
at this time. Let us consider a task τ of period P . Let
us consider a time t and let us consider an integer k
such that kP ≤ t < (k + 1)P . In normal case, the
progression of τ , denoted prog(τ, t) can be:

• prog(τ, t) = k if the current job of τ (i.e., the one
which must start at kP ) is not completed,

• prog(τ, t) = k + 1 otherwise.

Concretely, each time a task completes its execution
(that is, its current job), it sends a message through a
dedicated queue to progression manager, which incre-
ments the progression counter of τ .

3. Consequently, for each task τ of period P a normal
progression at time t is characterized by:

prog(τ, t)− 1 ≤ ⌊ t

P
⌋ ≤ prog(τ, t) (1)

At each time unit, time manager (core 0) checks the
condition 1 for each task τ . If the condition is met,
then the schedule seems to correct. Else, the task is
late, meaning that it may steal computing resources to
other applications. In that case, time manager sends
a message to the local manager in charge of the task
to kill it.

These rules are illustrated in Figure 2.

3.4 Discussion: IMA or not IMA?
The consequences of the previous rules are:

• If the system S is schedulable, that is, if all tasks com-
plete before the end of their period, then time manager
does not send any kill order.

• If for some reasons the system becomes no more schedu-
lable, then time manager will kill the delayed tasks.

However, it is important to note that this sanction does
not implement the IMA principle presented in the introduc-
tion. Indeed, the task which has been killed is not neces-
sarily the faulty task. It could be a victim task that has
been delayed because a task with a higher priority lasted
more than its WCET. In that case, the faulty task is the
task with the high priority and the fault cannot be seen by
the time manager because the faulty task completes its job
before the end of its period.

As a consequence, the three previous rules are not suffi-
cient. To implement the IMA principle it is necessary to
implement a more precise monitor. This monitor must be
based on the worst-case scenario encountered by each task
(based on the WCET of each task). As there is no mi-
gration and no dependency between the tasks, there is no
timing anomaly. That means that if at time t a task τ is
the first one to exceed the predicted worst-case scenario (for
this task), then τ is the first faulty task, and a sanction can
be applied on it.

App & Container Core
Tasks

id prio period (s)

0 Core 1
τ1 82 5
τ2 87 10

1 Core 1 τ3 88 15
2 Core 2 τ4 83 5

Table 1: Configuration of our first experiment

Tasks Comput. time (s) Progression

t1 0.4 OK
t2 0.4 OK
t3 0.4 OK
t4 0.4 OK

t1 3 KO
t2 4 KO
t3 1 OK
t4 1 OK

Table 2: Execution results

4. FIRST EXPERIMENT
As this work is still in progress, we have implemented the

architecture in Figure 1 with the three rules in section 3.3
(and not the full IMA rules discussed above). We targeted
the HW platform Zynq Ultrascale+ made by Xilinx which
is one of the COTS hardware platforms considered by the
aeronautic and space industry. This processing unit involved
in this platform is composed of four ARM Cortex-A53 cores
with a frequency going up to 1.5 GHz. Each container im-
plements Alpine Linux 3.17.3. And the global Linux for the
four cores is from the Xilinx Yocto branch for the Ultra-
Scale+ processor.

The implementation is composed of 3 containers and 4
tasks. The configuration is given in Table 1. We performed
2 simple tests. The first one considers a schedulable system,
with a computational duration small compared to the period
duration. All tasks respect the progression constraint (1).
By increasing the execution time, the second test shows that
tasks with smaller periods do not respect the progression
constraint. The calculation of the core load confirms the
unfavorable situation. But the progression problems occur
on the small period tasks for which a higher priority has
been allocated (in a RM way). This behavior should be
investigated.

5. CONCLUSION AND FURTHER WORKS
This work is a first attempt to reproduce the RT-CASEs

principles on an ARM-based processor. Like RT-CASEs we
use Docker. However, we develop another monitor strategy
based on PREEMPT-RT and on the architecture depicted
in Figure 1. The next work will be to implement the IMA
rules discussed in section 3.4. We think that we will face
two difficulties: the first one is to generate the expected
worst-case scheduling of each task and to memorize it in the
time manager to decide to send a sanction to a faulty task.
The second expected difficulty will be about the required
precision of time to be able to sanction fastly enough a faulty
task in order to protect the other applications.



6. REFERENCES
[1] Aeronautical Radio Inc. ARINC Specification 653 P1-3.

Avionics application software standard interface:
Required services, 2013.

[2] Marcello Cinque, Raffaele Della Corte, Antonio Eliso,
and Antonio Pecchia. RT-CASEs: Container-Based
Virtualization for Temporally Separated
Mixed-Criticality Task Sets. In Sophie Quinton, editor,
31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), volume 133 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 5:1–5:22,
Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[3] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas
Weber, Frank Kirschke-Biller, Peter Heitkämper,
Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange.
AUTOSAR–A Worldwide Standard is on the Road. In
14th International VDI Congress Electronic Systems
for Vehicles, Baden-Baden. Citeseer, 2009.

[4] H̊avard Grip, Johnny Lam, David Bayard, Dylan
Conway, Gurkirpal Singh, Roland Brockers, Jeff
Delaune, Larry Matthies, Carlos Malpica, Travis
Brown, Abhinandan Jain, Alejandro Martin, and Gene
Merewether. Flight control system for nasa’s mars
helicopter. In AIAA Scitech 2019 Forum, 01 2019.

[5] Federico Reghenzani, Giuseppe Massari, and William
Fornaciari. The Real-Time Linux Kernel: A Survey on
PREEMPT RT. ACM Computing Surveys, 52(1):1–36,
feb 2019.

[6] John Rushby. Partitioning in avionics architectures:
Requirements, mechanisms, and assurance. Technical
report, SRI INTERNATIONAL MENLO PARK CA
COMPUTER SCIENCE LAB, 2000.


