
Towards a new task model for merging control
theory and real-time scheduling problems

Ismail Hawila∗ †, Liliana Cucu-Grosjean∗, Slim Ben Amor†, and Yves Sorel ∗
∗Kopernic, Inria, France, Email: firstname.lastname@inria.fr

†StatInf, France, Email: firstname.lastname@statinf.fr

Abstract—Existing task models for cyber-physical systems have
been proposed to merge the requirements associated to the
stability of control tasks managing physical components, and to
the schedulability of these tasks. Nevertheless, these models stay
to a high level without covering concerns like the data and/or
precedence constraints between different control tasks as well
as non-control tasks, the impact of period variation between
dependent control tasks and the impact of data constraints on the
execution times of control tasks. Our current work concentrates
on discussing properties of a new task model in order to cover
these concerns.

I. MOTIVATION OF OUR PROBLEM

Our every day life is improved by the presence of a
new generation of systems with integrated computational and
physical capabilities that can interact with humans through
many new modalities [1]. These systems are called cyber-
physical systems (CPSs). A defibrillator, a mobile phone, an
autonomous car or an aircraft, are all examples of CPSs. Be-
side constraints like power consumption, security, correctness,
size and weight, CPSs may have cyber components required to
fulfill their functions within a limited execution time interval,
often imposed by the physical environment, which is also
known as real-time constraints.

Concretely, the CPS design implies the implementation of
controllers as periodic programs that have real-time constraints
to meet. Usually, the programs are modeled as real-time tasks
and the associated CPS task model is considered more general
than the classical real-time task model as defined by Liu
and Layland in [2]. Recent results [3] have underlined that
there is a gap between the CPS stability as defined within
a control theory context and the schedulability as defined
within the real-time scheduling community and the authors
have proposed a new model to fill this gap. Nevertheless, when
considering the co-design problem there are no dependencies
considered between the controller tasks while they may share
the same microcontroller for their execution [4]–[6]. More
precisely, in the remainder of this paper, we understand by
controller, a cyber component algorithm deciding what actions
must be taken based on sensor readings or input data. The
output of the controller is the input to the physical component
of the system, usually called plant, which forces the output of
the plant to follow a desired setpoint [7]. This implies that a
control task implements the controller’s algorithm, such that
computing the output of the controller is done in this task.
Moreover, by stability we mean that the output of the CPS is
under control, following the desired setpoint.

A simple real-time constraint to be fulfilled by a control task
is to have its worst-case execution time (WCET) smaller than
the period of its execution. Often, the real-time community
has studied the impact of the period variation on the stability
of the controller, but, to the best of our knowledge, no effort
has been dedicated to the impact of the variation of values
for variables describing external events on the variation of
execution time of a control task. This limitation may come
from the fact that, usually, the real-time control problems are
studied by the scheduling community and much less by the
WCET community.

With respect to the proposition of a new task model merging
scheduling and WCET concerns for real-time control systems,
our purpose is that this new task model fulfills the following
expectations:

1) the data and/or precedence constraints between different
control tasks as well as non-control tasks are considered;

2) the impact of data constraints on the execution times of
control tasks is considered;

3) the impact of period variation between dependent control
tasks is considered.

Our contribution concerns underlining limitations of exist-
ing work and the presentation of preliminary results in favor of
the proposition of a new task model. In Section II, we present
a use case of an open source measurement-based benchmark
that we use to support our discussion. We detail our discussion
in Section III by considering existing work and its limitations.
In the last section of the paper, we conclude by presenting a
possible work plan towards the proposition of a new real-time
control task model.

II. CONSIDERED USE CASE: KDBENCH

Our discussion on a potential new task model is sup-
ported with examples based on KDBench [8]1. This is a
measurement-based benchmark which is defined as a 4-uple
(A, p, M, c(A)) composed by a program A, a microcontroller
p, a measurement protocol M and an ordered sequence of
execution times c(A) of program A on the microcontroller
p. For the program A, one provides the source code as well
as the binary code. A measurement protocol M is defined
by the variation of the input variables (associated to sensors)
of these benchmarks. In our case, the variation of the input

1More details on the KDBench are available at https://team.inria.fr/
kopernic/kdbench/



variables is obtained by collecting them during a simulated
flight of a drone. The fourth element is an ordered set of
execution times, c(A), proposed to overcome the difficulty of
the reproducibility of results [9] while comparing execution
times measured for the same program on slightly different
microcontroller configurations. Moreover, we use execution
times measured at the scheduler level in order to decrease the
intrusion of the measurement protocol. Such measurements
are said to be obtained in a hardware-in-the-loop manner.
We understand by hardware-in-the-loop that the execution of
the benchmarks is done on a microcontroller while sensors
and actuators of a CPS, as well as its physical environment,
are simulated. Indeed, our community does not often provide
numerical results for programs executed on microcontrollers
because of the important effort of implementation required for
such execution, or the lack of access to these microcontrollers.
We believe that this limitation prevents our community from
proposing realistic models describing the impact of existing
microcontrollers on the execution time variation of programs
and thus our community proposes results that may be not real-
istic w.r.t. the microcontrollers used by the real-time industry.

In this paper, we put the basis towards a new task model
and discussing our proposal with respect to a real execution
platform composed of a microcontroller, sensors and actuators.

III. EXISTING WORK AND DISCUSSION ON A NEW TASK
MODEL

In this paper we consider the programs or real-time tasks to
be scheduled on a single-core microcontroller with no hard-
ware accelerators. The scheduling algorithm is a preemptive
fixed-priority algorithm where the priorities are given, they
cannot be modified during the execution of the system.

In this section, we propose a discussion on potential means
to describe a real-time control task set and one typical design
choice is the use of Directed Acyclic Graphs (DAGs) to
represent data and/or precedence constraints between tasks.

We understand by a precedence constraint that data is
provided by a task for its successor and that the successor
task cannot be executed before the predecessor task, and this
is ensured in the KDBench programs by the choice of periods
and priorities. We understand by data constraints that the
successor task requires some data from the predecessor task,
but this does not require the successor to wait for new data
instead it can execute with the latest available data. In data
constraints a task can be faster than its predecessor, while in
precedence constraints case the task set is not schedulable.
Both types of constraints are depicted by edges of the DAG.

A. Using DAG-based model

Within the KDBench benchmark, the set of programs are
those of the open-source drone autopilot PX4-RT, where three
programs are control programs (or tasks) called: Position,
Attitude and Rate ctrl. In Figure 1, we provide the KDBench
programs and their two types of constraints.

In Figure 2, we provide a possible DAG representation
of data and precedence constraints as described in Figure 1,

Fig. 1. A DAG describing constraints between KDBench programs

where programs that are not control ones are represented in
green. Indeed, we represent by continuous lines edges that
depict precedence constraints between tasks and by dotted
lines edges that depict the data constraints.

Fig. 2. Data and precedence constraints represented by a DAG-based task
model for KDBench programs

Existing work has included such DAG-based models but
they do not consider several dependent control tasks.

1) In [5] a set of independent control applications each
corresponding to a different plant are scheduled on a
single-core microcontroller, where each control applica-
tion is represented by a DAG model. Whereas in our
case we want to model the constraints between tasks,
that are scheduled on a single-core microcontroller, and
that contribute to the control of a unique plant.

2) Different works as in [6], [10] targeted the control
scheduling co-design, where the assignment of periods
and priorities of multiple control applications running
on the same microcontroller is done considering some
control performance metrics. However, these control
applications are considered independent from each other.

B. The need for a model with different periods for different
tasks

KDBench programs have different periods for different
control tasks. For instance, Rate ctrl has a smaller period
than Attitude, while Attitude has a smaller or equal period
than Position. The reason is that attitude dynamics is “faster”
than the translational position dynamics, meaning attitude and
angular rates should be faster to ensure vehicle stability. One
possible solution is to allow different periods for tasks having
precedence or data constraints. For instance, in Figure 3 we
provide one example of programs periods, where simulated
flights are stable.



Fig. 3. Different periods for a DAG-based task model of KDBench programs

Existing work includes such DAG-based models but, to
the best of our knowledge these results are not provided for
(control or not) tasks with different periods.

1) the most common DAG-based model associates to the
entire set of tasks a unique DAG to describe constraints
between tasks [11]–[13];

2) recent results have been provided for several DAGs but
each DAG describes a task and no constraints between
tasks is considered [5], [14].

C. The impact of data constraints on the execution times of
control tasks is considered

Fig. 4. Execution time of rate control tasks clustered by paths

The data received by a task at the beginning of each job
may have an impact on the path executed within the program.
In Figure 4 we present a sequence of 6000 execution times for
the Rate ctrl task. These execution times have been recorded
during a flight of 60 seconds. We have identified by the same
colour execution times obtained by executing almost the same
path within the control flow graph (CFG) of this task. We
understand by a CFG of a program or task a directed graph
representing all paths that may be taken during the execution of
that program. A node within a CFG represents a basic block
and a directed edge represents a jump transition from one
”basic block” to another. A CFG may be built from the source
code of a program or from its binary code and it is, often, used
for the WCET estimation of a program on a microcontroller.

We understand by a basic block a maximal sequential set of
instructions within a program.

In order to illustrate the impact of received data on the
executed path and execution time of tasks, let us consider 2
tasks (τ1, τ2) with precedence constraints, where τ2 consumes
data x produced by τ1. Assuming also that the CFG of Figure 5
corresponds to τ2, then depending on the value of x received
by τ2, one may decide to execute the block B or the block
C. If the execution time of blocks B and C are significantly
different this has an impact on the total execution time of
the concerned job of τ2. This is somehow what is happening
for the Rate ctrl task, so depending on the data which is the
setpoint received from Atitude task the path taken in the CFG
is affected leading to the variation of execution times we see
in Figure 4.

In order to illustrate the notion of similar paths, let us
reconsider the two paths within the CFG of the task illustrated
in Figure 5. In our case, we say that these two paths are almost
the same if they have a majority of common instructions, e.g.,
if less than 15% of instructions are different. For instance,
for the paths ABD and ACD in Figure 5 we say that they
are almost the same if at least 85% of instructions between
the two paths are the same, while the order of instructions is
considered.

Thus, in Figure 4 we identify, at least, 5 different paths
that are executed during the flight. These different paths are
executed due to the variation of some input variables during
the flight. We may notice that, for instance, the paths in blue
(middle part of the figure) and the paths in orange (lower part
of the figure), that have considerable number of instructions
difference, have different execution times. To the best of
our knowledge, there is no existing task model considering
the relation between the path variation as a mean to adapt
the period or the scheduler choice in order to improve the
schedulability and the stability of the entire CPS.

In the literature, two paths are considered as identical if they
contain the same ordered sequence of instructions. Otherwise,
they are considered to be different. A program may have an
extremely important number of paths (more than 4000 paths
for the Sensors program). For this reason we propose this
notion of similar paths.

For example, when generating a figure such as Figure 4,
we have faced the difficulty of using an important number
of colour to distinguish among paths. By introducing similar
paths, we have decreased this number and make the figure
more readable. We may notice that the definition seems
promising as execution times of similar paths are grouped
within the same horizontal clusters of execution times.

IV. CONCLUSION

In this paper we discuss new task models for cyber-physical
systems merging the requirements associated to the stability
of control tasks managing physical components, and to the
schedulability of these tasks. Our discussion includes data
and/or precedence constraints between different control tasks
as well as non-control tasks, the impact of period variation



Fig. 5. Example of a CFG with two different paths

between dependent control tasks and the impact of data
constraints on execution times of control tasks. Moreover, we
underline limitations of existing work and we list mandatory
properties that a new task model should cover. Our discussion
is based on an open source measurement-based benchmark,
KDBench.

Recent existing work has concentrated on the sensitivity
analysis of periods for control tasks in order to improve
the schedulability and the stability of the entire CPS. The
main difficulty comes from merging information on periods
(important for the stability problem) and execution times
(important for the schedulability problem). Our future work
will consider probabilistic distributions describing periods and
execution times as a way to combine control tasks and non-
control tasks. While probabilities are naturally associated to
execution times by WCET statistical estimators, we identify
the difficulty of associating probabilities to periods, because
periods are imposed by the sensors design and their variations
could be necessary when physical environment has important
changes.

REFERENCES

[1] Radhakisan Baheti and Helen Gill. Cyber-physical systems. IEEE, 2011.
[2] Chung Laung Liu and James W. Layland. Scheduling algorithms for

multiprogramming in a hard-real-time environment. J. ACM, 20(1):46–
61, 1973.

[3] Hoon Sung Chwa, Kang G. Shin, and Jinkyu Lee. Closing the gap
between stability and schedulability: A new task model for cyber-
physical systems. In IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS, pages 327–337, 2018.

[4] Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin.
DMAC: deadline-miss-aware control. In 31st Euromicro Conference on
Real-Time Systems, ECRTS 2019, volume 133 of LIPIcs, pages 1:1–1:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[5] Amir Aminifar, Soheil Samii, Petru Eles, Zebo Peng, and Anton Cervin.
Designing high-quality embedded control systems with guaranteed sta-
bility. In Proceedings of the 33rd IEEE Real-Time Systems Symposium,
RTSS 2012, pages 283–292. IEEE Computer Society, 2012.

[6] Yang Xu, Anton Cervin, and Karl-Erik Årzén. Jitter-robust lqg control
and real-time scheduling co-design. In 2018 annual American control
conference (ACC), pages 3189–3196. IEEE, 2018.

[7] John C Doyle, Bruce A Francis, and Allen R Tannenbaum. Feedback
control theory. Courier Corporation, 2013.

[8] Marwan Wehaiba el Khazen, Kevin Zagalo, Hadrien Clarke, Mehdi
Mezouak, Yasmina Abdeddaı̈m, Avner Bar-Hen, Slim Ben-Amor, Ri-
hab Bennour, Adriana Gogonel, Kossivi Kougblenou, Yves Sorel, and
Liliana Cucu-Grosjean. Work in progress: Kdbench - towards open
source benchmarks for measurement-based multicore WCET estimators.
In 28th IEEE Real-Time and Embedded Technology and Applications

Symposium, RTAS 2022, Milano, Italy, May 4-6, 2022, pages 309–312.
IEEE, 2022.

[9] Cristian Maxim, Adriana Gogonel, Irina Mariuca Asavoae, Mihail
Asavoae, and Liliana Cucu-Grosjean. Reproducibility and representativ-
ity: mandatory properties for the compositionality of measurement-based
WCET estimation approaches. SIGBED Rev., 14(3):24–31, 2017.

[10] Yang Xu, Karl-Erik Årzén, Anton Cervin, Enrico Bini, and Bogdan
Tanasa. Exploiting job response-time information in the co-design of
real-time control systems. In 2015 IEEE 21st International Conference
on Embedded and Real-Time Computing Systems and Applications,
pages 247–256, 2015.

[11] José Carlos Fonseca, Geoffrey Nelissen, Vincent Nélis, and Luı́s Miguel
Pinho. Response time analysis of sporadic DAG tasks under partitioned
scheduling. In 11th IEEE Symposium on Industrial Embedded Systems
(SIES), 2016.

[12] Shuangshuang Chang, Jinghao Sun, Zhixiong Hao, Qingxu Deng, and
Nan Guan. Computing exact wcrt for typed DAG tasks on heterogeneous
multi-core processors. Journal of Systems Architecture, 124(102385),
2022.

[13] Slim Ben-Amor and Liliana Cucu-Grosjean. Graph reductions and
partitioning heuristics for multicore DAG scheduling. J. Syst. Archit.,
124:102359, 2022.

[14] Shuai Zhao, Xiaotian Dai, and Iain Bate. DAG scheduling and analysis
on multi-core systems by modelling parallelism and dependency. IEEE
Transactions on Parallel and Distributed Systems, 33(12), 2022.


