
Functional Latency Optimization for networked IMA system
Matthias Houssin

ONERA
ISAE-SUPAERO
Toulouse, France

matthias.houssin@onera.com

Oana Hotescu
ISAE-SUPAERO

University of Toulouse
Toulouse, France

oana.hotescu@isae-supaero.fr

Frederic Boniol
ONERA

Toulouse, France
frederic.boniol@onera.com

ABSTRACT
Modern cyber-physical systems are designed in networked dis-
tributed architectures that allow resource sharing and time parti-
tioning among software functions of different computing modules.
The distributed computing paradigm introduces functional chains,
i.e., ordered sets of tasks allocated to different modules that share
data. In this paper, we aim at formalizing the allocation of tasks and
network messages as an optimization problem that minimizes the
time between the entry of a data in a functional chain and the last
corresponding output (i.e., the age delay). The formulation is based
on the Periodic Scheduling Problem (PSP), a classic NP-hard opti-
mization problem often solved with Satisfiability Modulo Theory
(SMT). We consider the context of Integrated Modular Architecture
(IMA)with time-triggered network communication.

1 INTRODUCTION
The Integrated Modular Architecture (IMA) paradigm has been
largely adopted in the computing modules of many cyber-physical
systems. Depending on the application domain, frameworks such
as AUTomotive Open System ARchitecture (AUTOSAR) [6] and
ARINC653 [1] have been proposed to standardize IMA principles.

The idea under IMA is to define a computing platform composed
of general-purpose processing modules, operating systems and in-
terfaces for exchanging data between different processing modules.
A processing module can be shared by different applications from
different functions. The execution of applications on the distributed
architecture implies choosing an allocation for the applications.

Communication between computing modules is provided by one
or more networks. A recent trend in the automotive and aerospace
industry is to interconnect IMA modules with Time Sensitive Net-
working (TSN) [7]. TSN is a high data rate and low-latency Ethernet-
based standard for real-time communication among mixed-critical
applications. It ensures deterministic service thanks to accurate
time synchronization, stream reservation and scheduling of time-
sensitive data. Time-triggered link access is provided to transmit
the scheduled traffic with a Time Aware Shaper (TAS) implemented
in the output ports of TSN switches. The TAS requires the configu-
ration of a system-wide transmission schedule defining static time
intervals (windows) during which transmission of time-critical traf-
fic can have exclusive access to the port queue and cannot encounter
any interference from unscheduled messages.

These enhanced mechanisms provided by TSN introduce new
communication opportunities in IMA systems. To take advantage
of the full potential of IMA-TSN systems, the system configuration
needs to be coupled to the network behaviour. Therefore, appro-
priate strategies for service policies, routing, tasks allocation and
messages schedule need to be designed to achieve end-to-end op-
timal performances. In this paper, we formulate the problem of

finding an optimal allocation of tasks and network messages in
IMA-TSN systems. The optimization problem is formulated as a Pe-
riodic Scheduling Problem (PSP) [10] with the objective to minimize
functional latency such as the reaction delay for data transmitted
in functional chains.

This paper is organized as follows. First, we survey related work
in Section 2 and present background on IMA in Section 3. Then, we
introduce the system-network model in Section 4. In Section 5, we
formulate the optimization problem and in Section 6, we provide a
preliminary evaluation. Finally, in Section 7, we conclude the paper
and propose leads for future work.

2 RELATEDWORK
Finding optimal allocations and schedules in IMA and in the real-
time network is not a new problem. Considering the large adoption
of distributed computing, either on multi-core or interconnected
platforms, several works defining optimal allocations and sched-
uling have been proposed. The work in [11] proposed SMT-based
resolution for the scheduling problem in a time-triggered network.
The limits of this approach is the high complexity of the resolution
as highlighted in [5]. The survey in [10] lists some of these existing
works and presents the main optimization criterion, common con-
straints and resolution methods (mainly SMT and meta-heuristics)
for the allocation and scheduling problem. The end-to-end latency
constraint is an important constraint and is the main interest in
our paper. Our work considers multi-dependency functional chains,
which is only done in [8] with a very simplified network behaviour,
compared to other works such as [9] that are limited to mono-
dependency functional chains.

3 BACKGROUND
The concept of the Integrated Modular Architecture has been pro-
posed in embedded domains involvingmore andmore safety-critical
functions. To reduce the weight and number of computing re-
sources, the IMA principle relies on two main ideas: (1) resource
and (2) temporal partitioning.

Resource partitioning means that each software function is al-
located a set of spatial resources (CPU core, memory area, DMA
channel, etc.) in a static manner, meaning that the resource integra-
tor has to assign the maximum allowed resources to each function
while respecting space segregation between them. Operating sys-
tem mechanisms provide protection for function data against any
modification from the other functions.

Temporal partitioning means that the scheduling of software
functions on each CPU core is defined off-line by a periodic se-
quence of slots statically organized in a time-frame named the
MAjor time Frame (MAF). Each function is allocated a time slot
for execution. At the end of this time slot, if not completed, the



Matthias Houssin, Oana Hotescu, and Frederic Boniol

function is suspended and execution is given to the next function
(according to the time-table).

Figure 1: Example of IMA computing module

To illustrate the IMA principle, let us consider the architecture
shown in Figure 1. It describes an IMA module consisting of two
CPU cores, a single memory, four IO ports and one DMA engine.
The module hosts four functions: 𝐹1 and 𝐹2 on core 1, managed
by MAF1, 𝐹3 and 𝐹4 on core 2, managed by MAF2. The memory is
segregated into four parts. Each function is allocated one IO port.
Finally, the single DMA engine is shared by the four functions
according the local DMAMAF. Data transfert of 𝐹1 are done during
the time slot associated to 𝐹1 and so on.

4 MODEL
Next, we introduce a system-network model unifying tasks and
messages. The model is organized in three layers. First, the hard-
ware elements are introduced at the platform layer (subsection
4.1). The software elements (tasks and messages) are abstracted as
generic flows at the system layer (subsection 4.2). The last layer
models the latency properties to be evaluated (subsection 4.3).

4.1 Platform model
The first layer of the model describes the hardware view of the
platform. Follow the approach developed in [5], an IMA system-
network platform can be seen as a set of abstract nodes modeling in
a unified way the computing modules and switches of the platform,
connected through a set of abstract links modeling the processing
and the networking components of the platform.

Definition 4.1 (Platform). Let 𝑃 be an IMA system-network plat-
form. 𝑃 is defined by 𝑃 :=< Nodes, Links > where

— Nodes is the finite alphabet of nodes of 𝑃 (the IMA modules
and the network switches),

— and Links is the finite alphabet of links in 𝑃 (denoting the
CPUs, the DMAs, and then network links).

Example 4.2. Let us consider the platform depicted Figure 2a.
This platform is composed of four modules and two switches. Figure
2b describes the abstract model of the platform. The CPU and DMA
components of Module 0 are modeled by the links 𝑙2 and 𝑙3 as such
𝑙2 and 𝑙3 are looping links from node 𝑛2 to 𝑛2.

Definition 4.3 (Node). Let 𝑃 be a platform. Let n ∈ 𝑃 .Nodes denote
either a switch or a module.

Definition 4.4 (Link). Let 𝑃 be a platform. Let 𝑙 ∈ 𝑃 .Links, where
𝑙 denotes a processing or a networking element inside a node or
from a node to another one. Processing elements are CPU or DMA.
Links are defined by 𝑙 :=< src, dst, 𝑑𝑝 , 𝑞, type > where

(a) Real platform (b) Modeled platform

Figure 2: Platform example

— src ∈ Nodes is the source node of the link;
— dst ∈ Nodes is the destination node of the link;
— 𝑑𝑝 ∈ Q is the link propagation delay;
— 𝑞 ∈ Q is the link data-rate;
— 𝑡𝑦𝑝𝑒 ∈ {CPU, DMA, Net} indicates if the link represents a

CPU, a DMA or a network link.

4.2 System Model
The second layer of the model involves the tasks and the messages
hosted by the platform.

Definition 4.5 (Task model). Following [3, 5], a task hosted by a
IMA module is a software object defined as 𝜏 :=< 𝑇,𝐶, 𝐷 > where
𝑇 ∈ Q is the task period, 𝐶 ∈ Q is the worst-case execution time
(WCET), and 𝐷 ∈ Q is the deadline.

Definition 4.6 (Message). A message𝑚 :=< len >, where len ∈ N
is the message length, is an object sent through the network by a
task 𝜏 .

Definition 4.7 (Flow). A flow 𝑓 is defined as 𝑓 :=< 𝜏,𝑚 >. It
denotes the periodic action of a task 𝜏 sending a message𝑚.

Definition 4.8 (Flow-tree). The instances of a flow 𝑓 transit links
in the platform. A task often transmits the same data to multi-
ple tasks using a path that can be described as a tree. The al-
location of links to a flow 𝑓 is defined as a flow-tree function
𝑓 𝑡 : 𝑓 ↦→ {(𝑙, 𝑙 ′)} ⊂ 𝑃 .𝐿𝑖𝑛𝑘𝑠 × 𝑃 .𝐿𝑖𝑛𝑘𝑠 . The root of the flow-tree,
𝑟𝑜𝑜𝑡 (𝑓 𝑡 (𝑓 )), is the starting point of any flow instance (necessarily a
CPU link). The last links transited by 𝑓 in the tree are the leaves of
the flow-tree defined as 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑓 𝑡 (𝑓 )) := {𝑙 |𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 )) ∧ ∀𝑙 ′ ∈
𝐼𝑚(𝑓 𝑡 (𝑓 )), (𝑙, 𝑙 ′) ∉ 𝐼𝑚(𝑓 𝑡 (𝑓 ))}.

Definition 4.9 (Image of a relation). Consider the flow-tree as an
example of relation, we define the image of comparable relations:

𝐼𝑚 : 𝑋 ↦→
⋃

{𝑥1, 𝑥2}
(𝑥1,𝑥2 ) ∈𝑋

This definition can be applied to any set of pairs of objects.

For a given platform 𝑃 , let us denote:
— Flows as the set of flows hosted by 𝑃 ;
— 𝑓 𝑙

𝑘
is the k-th instance of 𝑓 considered on link 𝑙 . It may be

either an instance of task or message;
— 𝐼 (Flows) = {𝑓 𝑙

𝑘
|𝑓 ∈ 𝐹𝑙𝑜𝑤𝑠, 𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 )), 𝑘 ∈ N} ;

— 𝐼 (𝑓 ) the set of all instances of the flow 𝑓 .

Definition 4.10 (Workload). Let 𝑃 be a platform with 𝑙 ∈ P.Links
and 𝑓 ∈ Flows. A link 𝑙 in the flow tree 𝑓 𝑡 (𝑓 ) is occupied by 𝑓



Functional Latency Optimization for networked IMA system

during a certain amount of time. It is the workload𝑤𝑙 defined as :

𝑤𝑙 (𝑓 , 𝑙) =
{

𝑓 .𝜏 .𝐶 if 𝑙 .type = CPU
𝑓 .𝑚.𝑙𝑒𝑛

𝑙 .𝑞
if 𝑙 .type ∈ {DMA, Net}

If the link is a𝐶𝑃𝑈 link, the task corresponding to flow 𝑓 is executed,
so the workload is given by its WCET. In case of network and 𝐷𝑀𝐴

links, the workload is the time required by 𝑓 to be sent on 𝑙 . It
depends on the 𝑓 .𝑚.𝑙𝑒𝑛 and 𝑙 .𝑞1.

The evolution of flows instances through the system is repre-
sented by two types of events: the arrival and the transmission of
flows instances on the links.

Definition 4.11 (Arrival time). Let 𝑡𝑎𝑟𝑟 : 𝐼 (𝐹𝑙𝑜𝑤𝑠) → R+, 𝑡𝑎𝑟𝑟 (𝑓 𝑙𝑘 )
the time when a flow instance 𝑓𝑘 arrives on link 𝑙 .

Definition 4.12 (Transmission time). Let 𝑡𝑡𝑟𝑎𝑛𝑠 : 𝐼 (𝐹𝑙𝑜𝑤𝑠) →
R+, 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 ) the time when a flow instance 𝑓𝑘 is transmitted or
executed on link 𝑙 .

4.3 Functional analysis
Definition 4.13 (Data). A data 𝛿 ∈ 𝐷𝑎𝑡𝑎 is directly related to

a flow 𝑓 . We denote this relation by 𝑠𝑟𝑐𝐹𝑙𝑜𝑤 : 𝛿 ↦→ 𝑓 . A new
instance of the flow 𝑓𝑘 corresponds to a new refresh of the value of
𝛿 , denoted 𝛿𝑘 . This matches the principles brought in [4].

Definition 4.14 (Carry). To associate a data instance 𝛿 𝑗 to the flow
instance 𝑓𝑘 which carries it, let us introduce a Boolean function
𝑐𝑎𝑟𝑟𝑦 (𝑓𝑘 , 𝛿 𝑗 ) which can be either 1 if 𝑓𝑘 carries 𝛿 𝑗 or 0 otherwise.

Definition 4.15 (Functional chain). A functional chain 𝐹𝐶 ∈ 𝐹𝑢𝑛𝑐𝑠

is a directed acyclic graph (DAG) of flows. We note (𝑓 , 𝑓 ′) ∈ 𝐹𝐶

where 𝑓 , 𝑓 ′ ∈ 𝐹𝑙𝑜𝑤𝑠 to mean that 𝑓 precedes 𝑓 ′ in 𝐹𝐶 , indicating
that the data transported by 𝑓 is transmitted to 𝑓 ′.

Example 4.16. An example of functional chain is given in Figure
3 where 𝑓0 is the entry flow of the chain (i.e., it receives input data
𝛿0) and 𝑓3 is the output flow (i.e., the end of the functional chain).

Figure 3: Example of functional chain

Definition 4.17 (System). A system 𝑆𝑦𝑠 :=< 𝑃, 𝐹𝑢𝑛𝑐𝑠 > is a plat-
form 𝑃 hosting a set of functional chains Funcs.

5 OPTIMIZATION PROBLEM
The optimization problem aims to find the optimal allocation of
tasks and network messages. This assignment depends on the trans-
mission time of each flow instance in the flow tree which optimizes
the functional latency. To perform this global optimization, we as-
sume perfect synchronization. Based on these times, future work
will define configurations depending on the characteristics of the
distributed systems in terms of synchronization and service policies.

1This supposes that the execution time through the DMA is linear with the length of
the flow to transmit

5.1 Parameters and variables
The optimization problem considers the following parameters and
decision variables.

5.1.1 Constant parameters.

— A system 𝑆𝑦𝑠 and the hardware platform of the system,
𝑆𝑦𝑠.𝑃 ;

— The set of functional chains in the system, 𝑆𝑦𝑠.𝐹𝑢𝑛𝑐𝑠;
— The flows composing the functional chains:

𝐹𝑙𝑜𝑤𝑠 = {𝑓 |𝑓 ∈ ⋃
𝐼𝑚(𝐹𝐶)∀𝐹𝐶 ∈ 𝑆𝑦𝑠.𝐹𝑢𝑛𝑐𝑠}

— A set of data, 𝐷𝑎𝑡𝑎, associated to flows in functional chains.

5.1.2 Decision variables.

— ∀𝑓 ∈ 𝐹𝑙𝑜𝑤𝑠, 𝑓 𝑡 (𝑓 ) are the flow-trees to be determined for
all flows in the system;

— ∀𝑓 𝑙
𝑘
∈ 𝐼 (𝐹𝑙𝑜𝑤𝑠), variables 𝑡𝑎𝑟𝑟 (𝑓 𝑙𝑘 ) and 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 ) are the

arrival and the transmission times to compute for each
instance of flow on each link that will lead to an allocation.

— ∀𝛿 𝑗 |𝛿 ∈ 𝐷𝑎𝑡𝑎 ∧ ∃𝑠𝑟𝑐𝐹𝑙𝑜𝑤 (𝛿) 𝑗 ∈ 𝐼 (𝐹𝑙𝑜𝑤𝑠),∀𝑓𝑘 ∈ 𝐼 (𝐹𝑙𝑜𝑤𝑠),
the variable 𝑐𝑎𝑟𝑟𝑦 (𝑓𝑘 , 𝛿 𝑗 ) is to be determined for each flow
instance 𝑓𝑘 , and each data instance 𝛿 𝑗 .

5.2 Objective
Definition 5.1 (Functional latency). Functional latency is the time

between the entry of a data instance 𝛿𝑘 , and its use by a frame of
an output flow on a leaf link 𝑓 ′𝑙

′

𝑘 ′ :

𝐹𝐿
𝑓 ′𝑙

′
𝑘′ ,𝛿𝑘

=𝑐𝑎𝑟𝑟𝑦 (𝑓 ′𝑙
′

𝑘 ′ , 𝛿𝑘 ) × [𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 ′𝑙
′

𝑘 ′ ) +𝑤𝑙 (𝑓 ′, 𝑙 ′) + 𝑙 ′ .𝑑𝑝

− 𝑡𝑎𝑟𝑟 (𝑓 𝑙𝑘 )], where 𝑓 = 𝑠𝑟𝑐𝐹𝑙𝑜𝑤 (𝛿)

The objective of the optimization problem is to minimize the
maximum functional latency of all flows carrying data, in short,
the age delay [2]:

minimize : 𝑚𝑎𝑥 (𝐹𝐿
𝑓 ′𝑙

′
𝑘′ ,𝛿𝑘

)
𝑓 ′𝑙

′
𝑘′ ∈𝐼 (𝐹𝑙𝑜𝑤𝑠 ),𝛿∈𝐷𝑎𝑡𝑎

5.3 Constraints
Constraint 5.3.1 (Resource use). This first constraint represents
the impossibility for a link or a CPU to process two messages or
two tasks at the same time. This translates as "for any pair of flow
instances, one must be fully processed on the link 𝑙 so that the other
instance can begin its process on the same link 𝑙".

∀𝑙 ∈ 𝐿𝑖𝑛𝑘𝑠,∀𝑓 , 𝑓 ′ ∈ 𝐹𝑙𝑜𝑤𝑠 |𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 )) ∩ 𝐼𝑚(𝑓 𝑡 (𝑓 ′))
∀𝑘, 𝑘′ ∈ N|𝑓 ≠ 𝑓 ′ ∨ 𝑘 ≠ 𝑘′

𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 ) +𝑤𝑙 (𝑓 , 𝑙) ≤ 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 ′𝑙𝑘 ′ )

XOR 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 ′𝑙𝑘 ′ ) +𝑤𝑙 (𝑓 , 𝑙) ≤ 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 )

Constraint 5.3.2 (Ready before running). A flow instance can not
be processed by a CPU/DMA link or sent by a network link until it
arrives in the queue of the link.

∀𝑓 ∈ 𝐹𝑙𝑜𝑤𝑠,∀𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 ))∀𝑘 ∈ N, 𝑡𝑎𝑟𝑟 (𝑓 𝑙𝑘 ) ≤ 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 )

Constraint 5.3.3 (CPU allocation and routing). The flow requires
a flow tree of links on which flow instances are to be transmitted.
The flow tree must start with the CPU link responsible for the



Matthias Houssin, Oana Hotescu, and Frederic Boniol

execution of the task associated to the flow. So, Equation 1 enables
a single CPU link as the root of the flow-tree, while Equation 2
builds the tree.

∀𝑓 ∈ 𝐹𝑙𝑜𝑤𝑠, ∃!𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 )) |𝑙 .𝑡𝑦𝑝𝑒 = 𝐶𝑃𝑈 (1)

∀𝑓 ∈ 𝐹𝑙𝑜𝑤𝑠,∀𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 )) |𝑙 .𝑡𝑦𝑝𝑒 ≠ 𝐶𝑃𝑈

∃!𝑙 ′ ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 )) |𝑙 ′ .𝑑𝑠𝑡 = 𝑙 .𝑠𝑟𝑐
(2)

Constraint 5.3.4 (Functional chain connectedness). A functional
chain is defined by pairs of flows. To ensure the connectedness of
the functional chain, for each pair of flows, the instances of the first
flow must be routed to the node where the second flow starts.

∀𝐹𝐶,∀(𝑓 , 𝑓 ′) ∈ 𝐹𝐶

∀𝑙 ′ ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 ′)) |𝑙 ′ .𝑡𝑦𝑝𝑒 = 𝐶𝑃𝑈

∃𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 )) |𝑙 .𝑑𝑠𝑡 = 𝑙 ′ .𝑠𝑟𝑐

Constraint 5.3.5 (Link transition). The transmission of a flow
instance from a link to another is the relation between the trans-
mission time on a link 𝑙 and the arrival time in the following link(s).

∀𝑓 𝑙
𝑘
∈ 𝐼 (𝐹𝑙𝑜𝑤𝑠),

∀𝑙 ′ ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 )) \ {𝑙}|𝑙 .𝑑𝑠𝑡 = 𝑙 ′ .𝑠𝑟𝑐 ∧ 𝑙 ′ .𝑡𝑦𝑝𝑒 ≠ 𝐶𝑃𝑈

𝑡𝑎𝑟𝑟 (𝑓 𝑙
′

𝑘
) = 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 ) +𝑤𝑙 (𝑓 , 𝑙) + 𝑙 .𝑑𝑝

Constraint 5.3.6 (Data generation). In real-time systems, data
periodically introduced in the system by sensors and then collected
by tasks. In our model, we consider the data to be refreshed at each
new instance of its source flow:

∀𝛿 ∈ 𝐷𝑎𝑡𝑎, 𝑓 = 𝑠𝑟𝑐𝐹𝑙𝑜𝑤 (𝛿),∀𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 ))
∀𝑘 ∈ N, 𝑐𝑎𝑟𝑟𝑦 (𝑓𝑘 , 𝛿𝑘 ) = 1

Constraint 5.3.7 (Data transmission). The data generated by the
source flows is forwarded to some other flows. The data transfer
takes place between two flow instances 𝑓 𝑙

𝑘
, 𝑓 ′𝑙

′

𝑘 ′ under the following
conditions: 𝑓 precedes 𝑓 ′, 𝑙 is adjacent to 𝑙 ′, 𝑙 ′ is the root of 𝑓 ′ flow
tree, and 𝑓 𝑙

𝑘
is the last instance of 𝑓 fully transmitted by 𝑙 before

the start of 𝑓 ′𝑙
′

𝑘 ′ ’s transmission.

∀𝐹𝐶 ∈ 𝑆𝑦𝑠.𝐹𝑢𝑛𝑐𝑠,∀𝑓 ′ ∈ 𝐼𝑚(𝐹𝐶)∀𝑓 ′𝑙
′

𝑘 ′ ∈ 𝐼 (𝑓 ) |𝑙 ′ .𝑡𝑦𝑝𝑒 = 𝐶𝑃𝑈

∀𝛿 𝑗 |𝛿 ∈ 𝐷𝑎𝑡𝑎 ∧ ∃𝑠𝑟𝑐𝐹𝑙𝑜𝑤 (𝛿)𝑙𝑗 ∈ 𝐼 (𝐹𝑙𝑜𝑤𝑠)

𝑐𝑎𝑟𝑟𝑦 (𝑓 ′𝑘 ′ , 𝛿 𝑗 ) ⇔ ∃𝑓 𝑙
𝑘
|



𝑐𝑎𝑟𝑟𝑦 (𝑓𝑘 , 𝛿 𝑗 )
(𝑓 , 𝑓 ′) ∈ 𝐹𝐶

𝑙 .𝑑𝑠𝑡 = 𝑙 ′ .𝑠𝑟𝑐 ∧ 𝑙 ∈ 𝐼𝑚(𝑓 𝑡 (𝑓 ))
𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 ) +𝑤𝑙 (𝑓 , 𝑙) + 𝑙 .𝑑𝑝 ≤ 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 ′𝑙

′

𝑘 ′ )
∀𝑓 𝑙

𝑘 ′′ : 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 ′′ ) ≤ 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 )
or 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 𝑙𝑘 ′′ ) +𝑤𝑙 (𝑓 , 𝑙) + 𝑙 .𝑑𝑝 ≥ 𝑡𝑡𝑟𝑎𝑛𝑠 (𝑓 ′𝑙

′

𝑘 ′ )

6 PRELIMINARY EVALUATION
6.1 Complexity estimation
The complexity of a Periodic Schedule Problem is non-polynomial
in most cases. In Table 1, We compute the complexity associated
with each constraint in our problem formulation considering the
following notations:

— 𝑛𝐿𝑖𝑛𝑘𝑠 , 𝑛𝐶𝑃𝑈 −𝐿𝑖𝑛𝑘𝑠 ,𝑚𝑎𝑥 (𝑎𝑑 𝑗) the numbers of links, CPU-
links and the maximum number of adjacent links;

— 𝑛𝑓 , 𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 the number of flows and the number of all
instances of all flows on all links;

— 𝑛𝐹𝑢𝑛𝑐𝑠 ,𝑚𝑎𝑥 (𝐹𝐶) the number of functions, and the maxi-
mum length of a function (in terms of precedence);

— 𝑛𝐷𝑎𝑡𝑎, 𝑛𝑑𝑎𝑡𝑎𝐼𝑛𝑠𝑡 the number of data in the system, and the
number of data instances.

Constraint Instances

Resource use
𝑛2
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑛𝐿𝑖𝑛𝑘𝑠

Ready before running 𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
CPU allocation and routing eq. 1 𝑛𝑓
CPU allocation and routing eq. 2 𝑛𝑓 × 𝑛𝐿𝑖𝑛𝑘𝑠
Functional chains connectedness 𝑛𝐹𝑢𝑛𝑐𝑠 ×𝑚𝑎𝑥 (𝐹𝐶) × 𝑛𝐶𝑃𝑈 −𝑙𝑖𝑛𝑘𝑠

Link transition 𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ×𝑚𝑎𝑥 (𝑎𝑑 𝑗)
Data generation 𝑛𝑑𝑎𝑡𝑎𝐼𝑛𝑠𝑡 × 𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑛𝑓

Data transmission 𝑛𝐹𝑢𝑛𝑐𝑠 ×𝑚𝑎𝑥 (𝐹𝐶) × 𝑛𝐷𝑎𝑡𝑎

Table 1: Constraints complexity

6.2 Example
The following example represents a small avionics case study based
on the platform in Figure 2. Let 𝑓0 is an ADIRS function (which
computes the Mach number of the aircraft). 𝑓0 runs on module M0.
It sends it to the automatic pilot (𝑓1, onM2) and to the flight control
function (𝑓2, on M2). 𝑓1 computes and sends the flight objective to
𝑓2. Finally, 𝑓2 computes and sends the angles to apply to the flight
surfaces to 𝑓3 (the flight surface control laws, on M3).

Flow Task Message
T C D len

𝑓0 8 2 8 200
𝑓1 8 2 8 200
𝑓2 4 2 4 200
𝑓3 2 1 2 -
Table 2: Flows parameters

For the given example, we can count all the instances of all
constraints. For one functional chain, more than 5000 constraints
are generated. Such a large number of constraints may imply a
large computing time. This parameter must be monitored cautiously
during incoming optimization trials. If the computing time becomes
too long, meta-heuristics need to be considered instead of the exact
solving approach.

7 CONCLUSION AND FUTUREWORK
This paper proposes a mathematical formulation to find optimal
tasks and network messages allocation for an IMA networked plat-
form model.

As a future work, we intend first to implement the proposed
mathematical formulation in an optimization program and solve
the problem with an exact solver (such as Z3) or find near-optimal
solutions with meta-heuristics (genetic algorithms). Second, this
first formulation needs to be extended to include constraints related
to specific IMA and network (for instance TSN) service policies
which will allow to handle both scheduled and unscheduled traffic.



Functional Latency Optimization for networked IMA system

REFERENCES
[1] Aeronautical Radio Inc. ARINC Specification 653 P1-3. 2013. Avionics Application

Software Standard Interface: Required Services.
[2] Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen, Moris Behnam, Ingo Sander,

Luís Almeida, and Thomas Nolte. 2017. Designing end-to-end resource reser-
vations in predictable distributed embedded systems. Real-Time Systems 53 (11
2017), 1–41. https://doi.org/10.1007/s11241-017-9283-6

[3] Nesrine Badache, Katia Jaffres-Runser, Jean-Luc Scharbarg, and Christian Fraboul.
2014. Managing temporal allocation in integrated modular avionics. In Proceed-
ings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). IEEE,
1–8.

[4] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas
Nolte. 2017. End-to-end timing analysis of cause-effect chains in automotive
embedded systems. Journal of Systems Architecture 80 (2017), 104–113.

[5] Silviu S. Craciunas and Ramon Serna Oliver. 2016. Combined task- and network-
level scheduling for distributed time-triggered systems. Real-Time Systems 52, 2
(01 Mar 2016), 161–200. https://doi.org/10.1007/s11241-015-9244-x

[6] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber, Frank Kirschke-
Biller, Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange.
2009. AUTOSAR–A Worldwide Standard is on the Road. In 14th International
VDI Congress Electronic Systems for Vehicles, Baden-Baden. Citeseer.

[7] IEEE. 2018. 802.1Q - IEEE Standard for Local and Metropolitan Area Net-
works—Bridges and Bridged Networks.

[8] Michael Lauer, Jérôme Ermont, Frédéric Boniol, and Claire Pagetti. 2011. Latency
and freshness analysis on IMA systems. In ETFA2011. IEEE, 1–8.

[9] Shane D McLean, Emil Alexander Juul Hansen, Paul Pop, and Silviu S Craci-
unas. 2022. Configuring ADAS platforms for automotive applications using
metaheuristics. Frontiers in Robotics and AI (2022), 353.

[10] Anna Minaeva and Zdeněk Hanzálek. 2021. Survey on periodic scheduling for
time-triggered hard real-time systems. ACM Computing Surveys (CSUR) 54, 1
(2021), 1–32.

[11] Wilfried Steiner. 2010. An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks. In 2010 31st IEEE Real-Time Systems Symposium.
IEEE, 375–384.

https://doi.org/10.1007/s11241-017-9283-6
https://doi.org/10.1007/s11241-015-9244-x

	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Model
	4.1 Platform model
	4.2 System Model
	4.3 Functional analysis

	5 Optimization problem
	5.1 Parameters and variables
	5.2 Objective
	5.3 Constraints

	6 Preliminary evaluation
	6.1 Complexity estimation
	6.2 Example

	7 Conclusion and future work
	References

